Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-GlcNAc:Gal beta 1-3GalNAc(GlcNAc leads to GalNAc) beta 6-N-acetylglucosaminyltransferase. 1980

D Williams, and G Longmore, and K L Matta, and H Schachter

The preceding paper (Williams, D., and Schachter, H. (1980) J. Biol. Chem. 255, 0000-0000) described a novel N-acetylglucosaminyltransferase in canine submaxillary gland microsomes which catalyzed the incorporation of GlcNAc into mucin acceptors. We show in the present report that the enzyme catalyzes th following reaction: UDP-GlcNAc + Gal beta 1-3GalNAc-X leads to Gal beta 1-3(GlcNAc beta 1-6) GalNAc-X + UDP, where X can be porcine submaxillary mucin polypeptide (Km = 5.2 mM), antifreeze glycoprotein polypeptide (Km = 23 mM), alpha-O-p-nitrophenyl (Km = 0.52 mM), beta-O-p-nitrophenyl (Km = 0.92 mM), alpha-O-o-nitrophenyl (Km = 0.86 mM), alpha-O-benzyl (Km = 0.77 mM), alpha-O-methyl (Km = 4.2 mM), or -H (Km = 1.2 mM). Ineffective acceptors (< 5% of the activity with Gal beta 1-3GalNAc-alpha-p-nitrophenyl) are asialo-ovine submaxillary mucin, asialo-alpha 1 acid glycoprotein, Gal beta 1-3GlcNAc-beta-p-nitrophenyl, Gal beta 1-3GlcNAc-alpha-methyl, Gal beta1-3GlcNAc, Gal beta 1-3-N-acetylgalactosaminitol, and D-fucose beta 1-3GalNAc-alpha-benzyl, indicating that both the Gal and GalNAc residues are essential for acceptor activity. The beta 1 leads to 6-linkage of GlcNAc to GalNAc in the acceptor Gal beta 1-3GalNAc-alpha-O-benzyl was established by methylation analysis and high resolution 1H nuclear magnetic resonance spectroscopy of a large scale preparation of product. Preliminary evidence has been obtained indicating that sialic acid linked alpha 2-6 to GalNAc or L-fucose linked alpha 1-2 to Gal inhibit the action of the beta 6-N-acetylglucosaminyltransferase on Gal beta 1-3GalNAc-porcine submaxillary mucin polypeptide.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D009077 Mucins High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface. Mucin
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D002236 Carbohydrate Conformation The characteristic 3-dimensional shape of a carbohydrate. Carbohydrate Linkage,Carbohydrate Conformations,Carbohydrate Linkages,Conformation, Carbohydrate,Conformations, Carbohydrate,Linkage, Carbohydrate,Linkages, Carbohydrate
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005964 Glucosyltransferases Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Glucosyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013363 Submandibular Gland One of two salivary glands in the neck, located in the space bound by the two bellies of the digastric muscle and the angle of the mandible. It discharges through the submandibular duct. The secretory units are predominantly serous although a few mucous alveoli, some with serous demilunes, occur. (Stedman, 25th ed) Submaxillary Gland,Gland, Submandibular,Gland, Submaxillary,Glands, Submandibular,Glands, Submaxillary,Submandibular Glands,Submaxillary Glands

Related Publications

D Williams, and G Longmore, and K L Matta, and H Schachter
November 1992, Analytical biochemistry,
D Williams, and G Longmore, and K L Matta, and H Schachter
March 1993, The Journal of biological chemistry,
D Williams, and G Longmore, and K L Matta, and H Schachter
December 1983, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
D Williams, and G Longmore, and K L Matta, and H Schachter
November 1984, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
Copied contents to your clipboard!