Comparison of the profile structures of isolated and reconstituted sarcoplasmic reticulum membranes. 1981

L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer

The profile structures of functional reconstituted sarcoplasmic reticulum (RSR) membranes were investigated as a function of the lipid/protein (L/P) ratio via x-ray diffraction studies of hydrated oriented multilayers of these membranes to a resolution of 10-15 A, and neutron diffraction studies on these multilayers to lower resolutions. Our results at this stage of investigation indicate that reconstitution of SR with variable amounts of Ca2+ pump protein for L/P ratios greater than 88 results in closed membraneous vesicles in which the Ca2+ pump protein is distributed asymmetrically in the membrane profile; a majority of the protein density is contained primarily in the extravesicular half of the membrane profile whereas a relatively lesser portion of the protein spans the hydrocarbon core of the RSR membranes. These RSR membranes are functionally similar and resemble isolated light sarcoplasmic reticulum in both profile structure and function at a comparable L/P ratio. Reconstitution with greater amounts of Ca2+ pump protein (e. g. L/P approximately 50-60) resulted in substantially less functional membranes with a dramatically thicker profile structure.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
January 1976, Zeitschrift fur Naturforschung. Section C, Biosciences,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
April 1981, Biochimica et biophysica acta,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
June 1968, Biochimica et biophysica acta,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
August 1970, The Journal of general physiology,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
May 1971, Archives of biochemistry and biophysics,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
December 1983, The Journal of biological chemistry,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
July 1998, The Journal of membrane biology,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
October 1972, Archives of biochemistry and biophysics,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
January 1982, Annual review of physiology,
L Herbette, and A Scarpa, and J K Blasie, and C T Wang, and A Saito, and S Fleischer
December 1983, Biophysical journal,
Copied contents to your clipboard!