Interaction between yeast beta-(1 goes to 3)glucan synthetase and activating phosphorylated compounds. A kinetic study. 1982

V Notario, and H Kawai, and E Cabib

Yeast beta-(1 goes to 3)glucan synthetase is stimulated by ATP or GTP. The structural requirements for the activation were investigated by testing several phosphorylated compounds. The simplest substance with stimulatory ability was inorganic pyrophosphate. Addition of a nucleoside, as in GDP, decreased the concentration required for half-maximal stimulation; a third phosphate group, as in GTP, further enhanced the stimulatory capacity. On the other hand, esterification of the terminal phosphate of GTP with a nucleoside or a methyl group led to a total loss of activating ability: dinucleoside triphosphates and the gamma-phosphate methyl ester of GTP acted as competitive antagonists of the activators. alpha,beta- and beta,gamma-imino and -methylene derivatives of both ATP and GTP stimulated the enzymatic activity, suggesting that activation can occur without covalent transfer either of the terminal phosphate or pyrophosphate, or of the nucleotidyl residue. The stimulatory effect of the beta,gamma-imino derivatives of ATP and GTP was not additive. The inhibition constants obtained with gamma-phosphate esters of GTP were the same for either one of the two imino analogs. It is concluded that adenosine and guanosine derivatives bind to the same domain of the enzyme. It is also postulated that activators may interact with the enzyme or with a regulatory protein at two locations, a binding site for the nucleoside moiety and a "functional" site for the pyrophosphate residue.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005964 Glucosyltransferases Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Glucosyltransferase
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D029702 Schizosaccharomyces pombe Proteins Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Fission Yeast Proteins,S pombe Proteins

Related Publications

V Notario, and H Kawai, and E Cabib
February 1980, The Journal of biological chemistry,
V Notario, and H Kawai, and E Cabib
February 1980, The Journal of biological chemistry,
V Notario, and H Kawai, and E Cabib
July 1997, The Journal of biological chemistry,
V Notario, and H Kawai, and E Cabib
January 1995, The Journal of biological chemistry,
V Notario, and H Kawai, and E Cabib
September 1973, The Biochemical journal,
V Notario, and H Kawai, and E Cabib
September 1990, Chemical & pharmaceutical bulletin,
V Notario, and H Kawai, and E Cabib
April 1994, Clinica chimica acta; international journal of clinical chemistry,
V Notario, and H Kawai, and E Cabib
January 1994, American journal of industrial medicine,
Copied contents to your clipboard!