Specific sequences in native DNA that arrest synthesis by DNA polymerase alpha. 1982

D T Weaver, and M L DePamphilis

The effect of the DNA sequence of a template on the progress of DNA polymerase alpha was determined at the resolution of single nucleotides by using single-stranded, circular phi X174 DNA as a template and unique phi X 174 ONA fragments terminally labeled at their 3'-ends as primers. Therefore, the amount of radioactivity observed was always proportional to the number and not the length of nascent DNA chains. Extension of a primer by alpha-polymerase revealed that 3'-ends of nascent DNA chains accumulated at specific arrest sites consisting of GC-rich sequences of 1-8 bases distributed nonuniformly along the template with intervening sequences of 0-140 bases. The precise location and composition of these sites were determined by DNA sequencing methods, but a consensus sequence was not detected. However, the same pattern of arrest sites recognized by DNA polymerase alpha from CV-1 cells also arrested alpha-polymerase from HeLa cells, calf thymus tissue, and phage T4 DNA polymerase. An exception was DNA polymerase I from Escherichia coli which was insensitive to arrest signals. Analysis of recombinant DNA templates containing phi X174 DNA inserted into M13 DNA revealed that arrest sites were defined exclusively by those sequences within 24 bases upstream and 140 bases downstream of the arrest point; long range interactions between template sequences were not involved. One of the strongest arrest sites was located in the first two nucleotides at the base of the stem on the primer-proximal side of a stable hairpin structure, suggesting that such structures arrest the polymerase. However, only 28% of all arrest site nucleotides were found in this position; the rest were up to 25 bases upstream from any computer-predicted hairpin. Therefore, all arrest sites cannot be defined by secondary structure alone, although proximity to secondary structures may amplify normal variations in the rate of DNA elongation caused by primary sequences.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010584 Bacteriophage phi X 174 The type species of the genus MICROVIRUS. A prototype of the small virulent DNA coliphages, it is composed of a single strand of supercoiled circular DNA, which on infection, is converted to a double-stranded replicative form by a host enzyme. Coliphage phi X 174,Enterobacteria phage phi X 174,Phage phi X 174,phi X 174 Phage,Phage phi X174
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D T Weaver, and M L DePamphilis
February 1975, Proceedings of the National Academy of Sciences of the United States of America,
D T Weaver, and M L DePamphilis
January 2006, Current biology : CB,
D T Weaver, and M L DePamphilis
May 1975, Journal of molecular biology,
D T Weaver, and M L DePamphilis
March 1995, Nucleic acids research,
D T Weaver, and M L DePamphilis
December 1980, Journal of biochemistry,
D T Weaver, and M L DePamphilis
March 1994, Molecular carcinogenesis,
Copied contents to your clipboard!