Aldosterone binding in isolated tubules I. Biochemical determination in proximal and distal parts of the rabbit nephron. 1982

N Farman, and A Vandewalle, and J P Bonvalet

Microbiochemical methods were applied to proximal tubules (PCT) and a mixture of distal and cortical collecting tubules (D + C) of rabbit kidney in order to define aldosterone binding sites. For each experiment, after incubation of kidney pyramids with [3H]aldosterone ([3H]A), either alone or in the presence of an excess unlabeled A, 100-150 mm of both categories of tubules were microdissected using collagenase. Specific binding was determined on the nuclear fraction of each sample. Aldosterone concentrations ranged from 2 X 10(-9) to 4.5 X 10(-8) M. No specific binding was detectable in PCT. Specific binding in D + C increased rapidly as a function of [3H]A concentration up to 5 X 10(-9) M and then more slowly. No plateau was reached. Both the absence of saturation of the binding curve and the curvilinear aspect of the Scatchard plot suggested the presence of two binding sites, one of high affinity, presumably a mineralocorticoid site, and the other of lower affinity, possibly a glucocorticoid site. These experiments suggest that the distal structures of the nephron, located in the cortex, are the main sites of binding of aldosterone and contain a high number of specific binding sites for this hormone.

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D007686 Kidney Tubules, Distal The portion of renal tubule that begins from the enlarged segment of the ascending limb of the LOOP OF HENLE. It reenters the KIDNEY CORTEX and forms the convoluted segments of the distal tubule. Distal Kidney Tubule,Distal Renal Tubule,Distal Kidney Tubules,Distal Renal Tubules,Kidney Tubule, Distal,Renal Tubule, Distal,Renal Tubules, Distal,Tubule, Distal Kidney,Tubule, Distal Renal,Tubules, Distal Kidney,Tubules, Distal Renal
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell

Related Publications

N Farman, and A Vandewalle, and J P Bonvalet
December 1981, The American journal of physiology,
N Farman, and A Vandewalle, and J P Bonvalet
November 1983, The American journal of physiology,
N Farman, and A Vandewalle, and J P Bonvalet
January 1998, Journal of nephrology,
N Farman, and A Vandewalle, and J P Bonvalet
July 1985, The American journal of physiology,
N Farman, and A Vandewalle, and J P Bonvalet
September 1990, Toxicology letters,
N Farman, and A Vandewalle, and J P Bonvalet
June 1991, Toxicology and applied pharmacology,
N Farman, and A Vandewalle, and J P Bonvalet
June 1969, Scandinavian journal of clinical and laboratory investigation,
N Farman, and A Vandewalle, and J P Bonvalet
March 1989, Seminars in nephrology,
N Farman, and A Vandewalle, and J P Bonvalet
July 1989, The American journal of physiology,
N Farman, and A Vandewalle, and J P Bonvalet
July 1984, The American journal of physiology,
Copied contents to your clipboard!