Integration and excision of bacteriophage lambda: the mechanism of conservation site specific recombination. 1981

H A Nash

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003434 Crossing Over, Genetic The reciprocal exchange of segments at corresponding positions along pairs of homologous CHROMOSOMES by symmetrical breakage and crosswise rejoining forming cross-over sites (HOLLIDAY JUNCTIONS) that are resolved during CHROMOSOME SEGREGATION. Crossing-over typically occurs during MEIOSIS but it may also occur in the absence of meiosis, for example, with bacterial chromosomes, organelle chromosomes, or somatic cell nuclear chromosomes. Crossing Over,Crossing-Over, Genetic,Crossing Overs,Genetic Crossing Over,Genetic Crossing-Over
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D001287 Attachment Sites, Microbiological Specific loci on both the bacterial DNA (attB) and the phage DNA (attP) which delineate the sites where recombination takes place between them, as the phage DNA becomes integrated (inserted) into the BACTERIAL DNA during LYSOGENY. Attachment Sites (Microbiology),Bacterial Attachment Sites,Phage Attachment Sites,Att Attachment Sites,AttB Attachment Sites,AttP Attachment Sites,Attachment Site (Microbiology),Attachment Site, Bacterial,Attachment Sites, Bacterial,Bacterial Attachment Site,Microbiologic Attachment Site,Microbiologic Attachment Sites,Att Attachment Site,AttB Attachment Site,AttP Attachment Site,Attachment Site, Att,Attachment Site, AttB,Attachment Site, AttP,Attachment Site, Microbiologic,Attachment Site, Microbiological,Attachment Site, Phage,Attachment Sites, Att,Attachment Sites, AttB,Attachment Sites, AttP,Attachment Sites, Microbiologic,Attachment Sites, Phage,Microbiological Attachment Site,Microbiological Attachment Sites,Phage Attachment Site

Related Publications

H A Nash
May 2024, Molecular microbiology,
H A Nash
January 1968, Cold Spring Harbor symposia on quantitative biology,
H A Nash
June 1977, Journal of molecular biology,
H A Nash
August 1970, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
H A Nash
January 1984, Cold Spring Harbor symposia on quantitative biology,
H A Nash
February 1975, Journal of molecular biology,
Copied contents to your clipboard!