Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 degrees C. 1984

R H White

The upper temperature at which a living system can exist is limited by the hydrolytic breakdown rate of its chemical constituents. The peptide bonds of proteins, the phosphodiester and N-glycosyl bonds in RNA and DNA, and the pyrophosphate and N-glycosyl bonds in nucleotides such as ATP and NAD are among the more important bonds that will undergo hydrolysis. The decomposition of biomolecules via non-hydrolytic pathways such as decarboxylations and dehydrations may also be critical factors in determining this upper temperature limit. Baross and Deming recently reported 'black smoker' bacteria, which they isolated from deep-sea hydrothermal vents, growing at 250 degrees C. Here I have attempted to establish the rates for the hydrolysis and/or decomposition of critical biomolecules to determine their ability to exist at this temperature. My results clearly indicate that if these organisms exist, and if their metabolic reactions occur in an aqueous environment, they could not survive at this temperature if they were composed of biomolecules such as proteins and nucleic acids, due to the very rapid rate of decomposition of such molecules.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009696 Nucleic Acids High molecular weight polymers containing a mixture of purine and pyrimidine nucleotides chained together by ribose or deoxyribose linkages. Nucleic Acid,Acid, Nucleic,Acids, Nucleic
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
Copied contents to your clipboard!