Mechanisms of DNA strand breakage and interstrand cross-linking by diaziridinylbenzoquinone (diaziquone) in isolated nuclei from human cells. 1984

L Szmigiero, and K W Kohn

AZQ had been found to produce DNA strand breaks and interstrand cross-links in intact cells; evidence had indicated that these two DNA lesions arise by different chemical mechanisms and vary independently in degree in different cell types. In the present work, the mechanisms of the production of DNA strand breaks and interstrand cross-links by AZQ were studied in isolated cell nuclei. This system avoided the problem of poor penetration of test substances into cells. The DNA lesions were measured by means of the alkaline elution technique. It was found that the production of DNA strand breaks by AZQ in isolated nuclei required the addition of a reducing agent such as NADPH and was almost completely prevented by superoxide dismutase. This indicates that the mechanism of DNA strand breakage involves transfer of an electron from a reduced form of AZQ to molecular oxygen. Unexpectedly, interstrand cross-linking also was enhanced greatly by previous reduction of AZQ by NADPH or NaBH4. However, this reaction was not inhibited by superoxide dismutase. General alkylating activity of AZQ also was stimulated by reduction; the pH-dependence of this reaction was determined. The mechanism of DNA interstrand cross-linking by AZQ was surmised to stem from alkylation reactions of the two aziridine groups. The findings suggest the possibility that AZQ or related compounds may function as bioreductive alkylating agents which might be selectively toxic to hypoxic tissues.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

L Szmigiero, and K W Kohn
May 2007, Chemical research in toxicology,
L Szmigiero, and K W Kohn
January 1999, British journal of cancer,
L Szmigiero, and K W Kohn
August 1994, Biochemical pharmacology,
L Szmigiero, and K W Kohn
June 2004, Biochimie,
L Szmigiero, and K W Kohn
August 2011, Cell death & disease,
L Szmigiero, and K W Kohn
April 1967, Journal of molecular biology,
Copied contents to your clipboard!