Photon correlation spectroscopy as a probe of planar lipid bilayer phase transitions. 1984

G E Crawford, and J C Earnshaw

Photon correlation spectroscopy has been applied to study phase transitions of planar bilayer membranes. The membrane tension and one specific membrane viscosity are probed. Difficulties arising in the measurement of the temperature dependence of these properties are discussed and a servo-control system to overcome them is described. Typical data are presented for monoglyceride bilayers. Membranes incorporating cholesterol display effects below the lipid transition temperature which are interpreted in terms of separation within the membrane into cholesterol-rich fluid regions and regions of lipid in the gel phase. Some of the cholesterol-rich regions are apparently of macroscopic extent.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004601 Elementary Particles Individual components of atoms, usually subatomic; subnuclear particles are usually detected only when the atomic nucleus decays and then only transiently, as most of them are unstable, often yielding pure energy without substance, i.e., radiation. Baryons,Fundamental Particles,Baryon,Elementary Particle,Fundamental Particle,Particle, Elementary,Particle, Fundamental,Particles, Elementary,Particles, Fundamental
D005989 Glycerides GLYCEROL esterified with FATTY ACIDS. Acylglycerol,Acylglycerols
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

G E Crawford, and J C Earnshaw
February 1983, Biophysical journal,
G E Crawford, and J C Earnshaw
February 1975, Biophysical journal,
G E Crawford, and J C Earnshaw
August 2005, Biophysical journal,
G E Crawford, and J C Earnshaw
June 1981, The Journal of biological chemistry,
G E Crawford, and J C Earnshaw
January 1974, Methods in enzymology,
G E Crawford, and J C Earnshaw
January 1986, Faraday discussions of the Chemical Society,
G E Crawford, and J C Earnshaw
September 2010, Biophysical journal,
G E Crawford, and J C Earnshaw
May 1988, Biophysical journal,
Copied contents to your clipboard!