Comparison of Clostridium botulinum toxins type D and C1 in molecular property, antigenicity and binding ability to rat-brain synaptosomes. 1984

S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo

Botulinum type D neurotoxin was purified 950-fold from the culture supernatant with an overall yield of 32%. The purified toxin had a specific toxicity of 5.8 X 10(7) mouse minimal lethal dose per mg of protein and a relative molecular mass of 140000. The purified toxin had a di-chain structure consisting of heavy and light chains with relative molecular masses of 85000 and 55000, respectively, linked by one disulfide bond. These subunits had different amino acid compositions and antigenicities. A similarity in molecular constructions and amino acid compositions was observed between type D and type C1 toxins as well as between their subunits. Among the seven kinds of monoclonal antibodies against type D toxin, six reacted with the heavy chain of type D toxin, while one of the six also reacted with the heavy chain of type C1 toxin and neutralized the toxicities of the two toxins. The other one of monoclonal antibodies reacted with the light chains of both toxins. This evidence indicates that both toxins have common antigenic sites on their heavy and light chains and that the antigenic site on the heavy chain may contribute to the neutralization of both toxins by antibody. The binding of type D toxin to rat brain synaptosomes was examined by use of 125I-labelled type D toxin. The binding was competitively inhibited not only by unlabelled type D and C1 toxins, but also by the heavy chains of both toxins, however, it was not inhibited by the light chain of type D toxin. These results suggest that the toxin receptors on synaptosomal membrane are common for type D and C1 toxins, and that the heavy chain contributes to the binding of toxin to synaptosomes and the structure of the binding sites on the heavy chains of both toxins is quite similar.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
August 1983, Journal of biochemistry,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
June 1984, Applied and environmental microbiology,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
December 1982, The Journal of pharmacology and experimental therapeutics,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
November 2000, The Journal of veterinary medical science,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
December 1975, Infection and immunity,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
April 1988, Infection and immunity,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
November 1990, FEMS microbiology letters,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
May 1980, Infection and immunity,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
July 1979, Naunyn-Schmiedeberg's archives of pharmacology,
S Murayama, and B Syuto, and K Oguma, and H Iida, and S Kubo
April 1994, The Journal of biological chemistry,
Copied contents to your clipboard!