Pulmonary response of fifth component of complement-sufficient and -deficient mice to hyperoxia. 1984

D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen

The fifth component of complement, C5, can form fragments that cause neutrophil chemotaxis, oxygen radical production, and lysosomal enzyme release. The purpose of this study was to determine if C5 and these fragments contribute to the inflammation seen in pulmonary oxygen toxicity as defined by histology and analysis of bronchoalveolar lavage fluid (BALF). In addition, the role of C5 in producing mortality in the animals was addressed. Pairs of C5 deficient (C5-) and C5 sufficient (C5+) mice, 6 mo or older, were placed in a chamber and challenged with 95% oxygen at ambient pressure. A significant difference in mortality was observed after 200 h of exposure, i.e., 90% mortality in C5+ mice vs. 25% mortality in C5- mice (P less than 0.001). This difference in mortality was not seen when C5- mice were transfused with plasma that contained C5 derived from C5+ mice. Morphometric analysis of histologic sections with light microscopy revealed earlier pathologic changes in C5+ mice that was characterized by increased cellularity due in part to neutrophil influx into the alveolar-capillary wall. Transmission electron microscopy also confirmed an earlier inflammatory response in the C5+ mice with evidence of injury to alveolar epithelial cells, interstitial edema, and an increase in the cellular component of the interstitium. Analysis of BALF also demonstrated earlier abnormalities in C5+ mice, which included a significantly greater percentage of neutrophils in the C5+ mice at 117 h. Similar studies in younger mice of these strains again showed earlier neutrophil accumulation in C5+ mice, but the time course of the injury was more protracted. This study shows that the presence of C5 is associated with a greater mortality and an earlier influx of neutrophils into murine lungs. However, in the absence of C5, neutrophils will still immigrate into the lung and hyperoxic damage will occur at a later time point, which demonstrates the inherent redundancy of the inflammatory process.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003182 Complement C5 C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX. C5 Complement,Complement 5,Complement C5, Precursor,Complement Component 5,Precursor C5,Pro-C5,Pro-complement 5,C5, Complement,C5, Precursor,C5, Precursor Complement,Complement, C5,Component 5, Complement,Precursor Complement C5,Pro C5,Pro complement 5
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
January 1980, Infection and immunity,
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
May 1993, Infection and immunity,
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
August 1982, The American review of respiratory disease,
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
April 1981, The American review of respiratory disease,
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
August 1997, American journal of respiratory cell and molecular biology,
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
February 2001, Journal of immunology (Baltimore, Md. : 1950),
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
January 2015, Experimental animals,
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
October 1982, Parasitology,
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
February 1978, Journal of immunology (Baltimore, Md. : 1950),
D A Parrish, and B C Mitchell, and P M Henson, and G L Larsen
January 1979, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!