The photoreaction of 9-cis-7,8-dihydrorhodopsin was examined at liquid nitrogen temperatures (-180 degrees C) in order to elucidate the photochemical events in visual pigments. This rhodopsin analog was prepared by incubating 9-cis-7,8-dihydroretinal with bovine opsin in the dark. 9-cis-7,8-Dihydrorhodopsin (lambda max = 427 nm) was cooled to -180 degrees C, and then irradiated at -180 degrees C with a 390 nm light, resulting in formation of its bathochromic product (lambda max = 465 nm). This result indicates that the presence of four double-bonds adjacent to the Schiff base nitrogen is sufficient to allow formation of a bathochromic product. Thus, the mechanism of formation of bathorhodopsin (in bovine rhodopsin system) may be considered as some change of the interaction between the conjugated double-bond system from C-9 to the Schiff base nitrogen and its surrounding charges in opsin, caused by rotation of 11-12 double-bond.