The critical steady-state hypoxic conditions in carbon tetrachloride-induced lipid peroxidation in rat liver microsomes. 1984

T Noll, and H De Groot

Defined steady-state oxygen partial pressures (PO2) were maintained constant with an oxystat system to study carbon tetrachloride (CCl4)-induced lipid peroxidation and oxygen uptake in rat liver microsomes. The initial rates of oxygen uptake and malondialdehyde formation indicated drastically increasing lipid peroxidation by decreasing PO2, attaining a maximum between 1-10 mmHg (0.1-1.3 kPa). Under these conditions, at the hypoxic end of the physiological PO2 in liver, CCl4 caused a 5-fold increase in the oxygen uptake rate and a 20-fold increase in the malondialdehyde formation rate while, at 80 mmHg (10.7 kPa) the haloalkane caused only an increase of 2- and 4-fold, respectively; in comparison, there was only a slight increase in NADPH-induced lipid peroxidation with increasing PO2. These data clearly demonstrate the critical role of low steady-state PO2 in CCl4-induced lipid peroxidation and support lipid peroxidation as a key factor in CCl4 hepatotoxicity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002251 Carbon Tetrachloride A solvent for oils, fats, lacquers, varnishes, rubber waxes, and resins, and a starting material in the manufacturing of organic compounds. Poisoning by inhalation, ingestion or skin absorption is possible and may be fatal. (Merck Index, 11th ed) Tetrachloromethane,Tetrachloride, Carbon
D002252 Carbon Tetrachloride Poisoning Poisoning that results from ingestion, injection, inhalation, or skin absorption of CARBON TETRACHLORIDE. CCl4 Poisoning,Poisoning, CCl4,Poisoning, Carbon Tetrachloride,CCl4 Poisonings,Carbon Tetrachloride Poisonings,Poisonings, Carbon Tetrachloride
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450

Related Publications

T Noll, and H De Groot
December 1977, Biochemical pharmacology,
T Noll, and H De Groot
February 1982, Biochemical pharmacology,
T Noll, and H De Groot
June 1998, Research communications in molecular pathology and pharmacology,
T Noll, and H De Groot
August 1979, Biochemical and biophysical research communications,
T Noll, and H De Groot
December 1980, Biochimica et biophysica acta,
T Noll, and H De Groot
January 1979, Toxicology and applied pharmacology,
T Noll, and H De Groot
June 2015, Toxicology and industrial health,
Copied contents to your clipboard!