Fine structural cytology of the rat subfornical organ during ontogenesis. 1984

H D Dellmann, and S J Stahl

The main developmental events in the subfornical organ take place between 17 fetal days (fd) and 5 days post natum (dpn) at which time it possesses most of its mature fine structural characteristics. The surface regional characteristics of ependymal cells differentiate primarily during this time as well, while the ependymal cellular fine structure, shape and relationship with neurons and the vascularity are well established prior to birth. Undifferentiated neurons contain glycogen prior to 19 fd and then differentiate by developing processes and organelles characteristic of neurons. By 5 dpn, the various types of neurons found in the mature subfornical organ are all present, except for giant vacuolated cells. Synapses containing only electron-lucent vesicles are first present at 20 fd, those containing additional electron-dense vesicles at 3 dpn. Microglial cells are first identifiable at 17 fd, and the first protoplasmic astrocytes are recognizable at 21 fd, while fibrous astrocytes are not detectable prior to 7 dpn. By 5 dpn, the cytological elements of the subfornical organ are all in place, and further developmental changes leading to adult fine structural characteristics by 30 dpn are essentially quantitative in nature.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004805 Ependyma A thin membrane that lines the CEREBRAL VENTRICLES and the central canal of the SPINAL CORD. Ependymas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013356 Subfornical Organ A structure, situated close to the intraventricular foramen, which induces DRINKING BEHAVIOR after stimulation with ANGIOTENSIN II. Organum Subfornicale,Organ, Subfornical,Organs, Subfornical,Organum Subfornicales,Subfornical Organs,Subfornicale, Organum,Subfornicales, Organum

Related Publications

H D Dellmann, and S J Stahl
January 1986, Archives d'anatomie, d'histologie et d'embryologie normales et experimentales,
H D Dellmann, and S J Stahl
July 1985, Brain research bulletin,
H D Dellmann, and S J Stahl
April 1990, The Journal of comparative neurology,
H D Dellmann, and S J Stahl
November 1965, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
H D Dellmann, and S J Stahl
January 2021, Frontiers in cellular neuroscience,
H D Dellmann, and S J Stahl
April 1988, Journal of electron microscopy technique,
H D Dellmann, and S J Stahl
November 1990, Brain research. Developmental brain research,
H D Dellmann, and S J Stahl
January 1995, Brain research bulletin,
H D Dellmann, and S J Stahl
January 1967, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
H D Dellmann, and S J Stahl
January 1979, International review of cytology,
Copied contents to your clipboard!