Scanning- and transmission electron-microscopic study of lymphatic vessels in the splenic white pulp of the macaque monkey. 1984

K Hokazono, and M Miyoshi

The fine structure of the lymphatic vessels in splenic white pulp of the macaque monkey was studied by scanning and transmission electron microscopy. Lymphatic vessels were slit-like or widened channels which extended along central arteries and their large branches. The walls of the vessels were very thin in comparison with those of nearby arteries. They were composed only of a layer of endothelium supported by underlying reticular cells. Endothelial cells were mostly ribbon-like and extended along the long axis of the vessels. Perikarya of the endothelial cells were slightly protruded into the lumen. The thin peripheral cytoplasm showed smooth surfaces, except for some tiny processes, especially at boundaries between adjacent cells. The basal surface of the endothelial cells was attached to the lattice of reticular cell processes forming the framework of the white pulp. Basal laminae in strands were intercalated between endothelial cells and reticular cells. Perforations were often seen through the endothelial cell cytoplasm. Lymphocytes or processes of macrophages seen in the perforations were considered to be in migration. Large patent openings through the endothelium were not observed. The wall structure of the lymphatic vessels in the splenic white pulp suggests that lymphocytes in the white pulp may move directly into the lymph flow, in addition to moving into the blood flow via the vascular sinuses.

UI MeSH Term Description Entries
D008208 Lymphatic System A system of organs and tissues that process and transport immune cells and LYMPH. Lymphatic Systems
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.

Related Publications

K Hokazono, and M Miyoshi
December 1970, Archives of oral biology,
K Hokazono, and M Miyoshi
August 1984, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
K Hokazono, and M Miyoshi
March 1988, Taehan Ch'ikkwa Uisa Hyophoe chi,
K Hokazono, and M Miyoshi
February 1974, Experimental eye research,
K Hokazono, and M Miyoshi
January 1989, Journal of electron microscopy,
Copied contents to your clipboard!