Comparison between intracellular and extracellular direct current recordings of sinus node activity for evaluation of sinoatrial conduction time. 1984

R Haberl, and G Steinbeck, and B Lüderitz

For evaluation of sinoatrial conduction time in humans, study of extracellular direct current (DC) electrograms from the sinus node has been proposed. To validate this method, we compared transmembrane potentials from multiple sites (40 to 60, "mapping" of sinoatrial activation by microelectrode technique) and extracellular DC electrograms of the sinus node in 12 isolated rabbit atria. Sinoatrial conduction time, measured by microelectrodes and by extracellular electrograms, was essentially the same if the DC electrode was positioned over the pacemaker center (35 +/- 15 and 33 +/- 15 msec, respectively; deviation less or equal to 2 msec). While in all experiments phase 4 and phase 0 depolarization of dominant pacemaker fibers was reflected in the DC electrogram, it shape was influenced by pacemaker location and duration of sinoatrial impulse propagation. If sinoatrial conduction time was long (greater than 25 msec) the transition from the diastolic to the upstroke slope was smooth and the sinus node potential was clearly separated from atrial activity. If sinoatrial conduction time was short (less or equal to 25 msec) the onset of the upstroke slope was well defined and the upstroke slope directly merged into atrial activity. Extracellular recordings 0.2 mm away from the pacemaker center were fairly unchanged in shape; however, sinoatrial conduction time was significantly underestimated. Underestimation also occurred when the tip size of the extracellular electrode was increased from 0.2 to 0.5 and 1.0 mm. Thus sinus node activity is reflected in extracellular DC recordings; however, measurement of sinoatrial conduction time by this technique requires exact localization of the electrode over the pacemaker center, which cannot be controlled in humans.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body
D002304 Cardiac Pacing, Artificial Regulation of the rate of contraction of the heart muscles by an artificial pacemaker. Pacing, Cardiac, Artificial,Artificial Cardiac Pacing,Artificial Cardiac Pacings,Cardiac Pacings, Artificial,Pacing, Artificial Cardiac,Pacings, Artificial Cardiac
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes

Related Publications

R Haberl, and G Steinbeck, and B Lüderitz
December 1983, Archives des maladies du coeur et des vaisseaux,
R Haberl, and G Steinbeck, and B Lüderitz
November 1982, Archives des maladies du coeur et des vaisseaux,
R Haberl, and G Steinbeck, and B Lüderitz
September 1975, British heart journal,
R Haberl, and G Steinbeck, and B Lüderitz
November 1975, Zeitschrift fur Kardiologie,
R Haberl, and G Steinbeck, and B Lüderitz
March 1997, Nihon rinsho. Japanese journal of clinical medicine,
R Haberl, and G Steinbeck, and B Lüderitz
November 1990, Archives des maladies du coeur et des vaisseaux,
Copied contents to your clipboard!