Na+-dependent regulation of extramitochondrial Ca2+ by rat-liver mitochondria. 1984

J Nedergaard

The presence and significance of Na+-induced Ca2+ release from rat liver mitochondria was investigated by the arsenazo technique. Under the experimental conditions used, the mitochondria, as expected, avidly extracted Ca2+ from the medium. However, when the uptake pathway was blocked with ruthenium red, only a small rate of 'basal' release of Ca2+ was seen (0.3 nmol Ca2+ X min-1 X mg-1), in marked contrast to earlier reports on a rapid loss of sequestered Ca2+ from rat liver mitochondria. The addition of Na+ in 'cytosolic' levels (20 mM) led to an increase in the release rate by about 1 nmol Ca2+ X min-1 X mg-1. This effect was specific for Na+. The significance of this Na+-induced Ca2+ release, in relation to the Ca2+ uptake mechanism, was investigated (in the absence of uptake inhibitors) by following the change in the extramitochondrial Ca2+ steady-state level (set point) induced by Na+. A five-fold increase in this level, from less than 0.2 microM to more than 1 microM, was induced by less than 20 mM Na+. The presence of K+ increased the sensitivity of the Ca2+ homeostat to Na+. The effect of Na+ on the extramitochondrial level was equally well observed in an K+/organic-anion buffer as in a sucrose buffer. Liver mitochondria incubated under these circumstances actively counteracted a Ca2+ or EGTA challenge by taking up or releasing Ca2+, so that the initial level, as well as the Na+-controlled level, was regained. It was concluded that liver mitochondria should be considered Na+-sensitive, that the capacity of the Na+-induced efflux pathway was of sufficient magnitude to enable it to influence the extramitochondrial Ca2+ level biochemically and probably also physiologically, and that the mitochondria have the potential to act as active, Na+-dependent regulators of extramitochondrial ('cytosolic') Ca2+. It is suggested that changes of cytosolic Na+ could be a mediator between certain hormonal signals (notably alpha 1-adrenergic) and changes in this extramitochondrial ('cytosolic') Ca2+ steady state level.

UI MeSH Term Description Entries
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005260 Female Females
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion

Related Publications

J Nedergaard
February 1990, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!