Somatotopic organization of the human somatosensory cortex revealed by neuromagnetic measurements. 1984

Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman

The primary projection areas in the human somatosensory cortex activated by electrical stimulation of the digits of the hand and the ankle were localized by measuring the magnetic field outside the head contralateral to the side of stimulation. Most of the spatial variation in the amplitude of the field component normal to the scalp could be accounted for by representing each source as a single current dipole in a spherical conducting medium with solely concentric variations in electrical conductivity, although the fit of this model to the data showed some statistically significant deviations. Based on the best-fitting parameter values of the model, we found that the projection areas of the thumb, the index finger, the little finger and the ankle were located at successively more medial positions along the primary somatosensory cortex, at an average depth of 2.2 cm from the scalp surface.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005385 Fingers Four or five slender jointed digits in humans and primates, attached to each HAND. Finger
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D014034 Toes Any one of five terminal digits of the vertebrate FOOT. Toe
D055590 Electromagnetic Phenomena Characteristics of ELECTRICITY and magnetism such as charged particles and the properties and behavior of charged particles, and other phenomena related to or associated with electromagnetism. Electrical Concepts,Electromagnetic Concepts,Electrical Phenomena,Electrical Phenomenon,Electromagnetic Phenomenon,Electromagnetics,Concept, Electrical,Concept, Electromagnetic,Concepts, Electrical,Concepts, Electromagnetic,Electrical Concept,Electromagnetic Concept,Electromagnetic Phenomenas,Phenomena, Electrical,Phenomena, Electromagnetic,Phenomenon, Electrical,Phenomenon, Electromagnetic

Related Publications

Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
May 2001, Cerebral cortex (New York, N.Y. : 1991),
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
January 1986, Acta oto-laryngologica. Supplementum,
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
October 2003, Brain research,
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
November 2018, Nature methods,
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
January 1991, Experimental brain research,
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
September 2008, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
April 2013, Glia,
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
March 1982, Brain research,
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
January 1986, Somatosensory research,
Y C Okada, and R Tanenbaum, and S J Williamson, and L Kaufman
January 1991, Neuroscience letters,
Copied contents to your clipboard!