Immunological correspondence between arthropod hemocyanin subunits. I. Scorpion (Leiurus, Androctonus) and spider (Eurypelma, Cupiennius) hemocyanin. 1984

J Markl, and W Gebauer, and R Runzler, and I Avissar

The hemocyanins of the scorpions Leiurus quinquestriatus and Androctonus australis, the tarantula Eurypelma californicum (all 24-mers), and the lycosid spider Cupiennius salei (dodecamer) were dissociated into subunits, the subunits isolated and studied by two-dimensional immunoelectrophoresis for interspecific cross-reactivities. Androctonus hemocyanin yielded a pattern of 8 subunit types in agreement with data from Lamy et al. (1979, Arch. Biochem. Biophys. 193, 140-149). Leiurus hemocyanin is also composed of 8 immunologically distinct subunits which could be assigned to the pattern of Androctonus in a subunit-to-subunit correlation. The subunit designations 1 to 6 of Lamy et al. could be adopted for both scorpion hemocyanins; however, in the present communication, Lamy's subunits 3A/3B are designated as 3'/3", because we could not unequivocally decide if 3' = 3A and 3" = 3B or vice versa. The 7 subunit types a to g of Eurypelma hemocyanin could be correlated with the scorpion hemocyanin subunits as follows: a = 3', b = 5B, c = 3C, d = 5A, e = 6, f = 2, g = 4. Additional cross-reactivities were detected between e/4, and f/5A, respectively. No subunit of Eurypelma hemocyanin is homologous to scorpion 3", which could not be precipitated by anti-Eurypelma antiserum. Antiserum against Cupiennius hemocyanin precipitated subunit f of Eurypelma and subunits 2 and 5A of scorpion hemocyanin. The published models of quaternary structure and a possible subunit phylogeny of arachnidan hemocyanins are discussed in view of the present results.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D007122 Immunoelectrophoresis A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006433 Hemocyanins Metalloproteins that function as oxygen transport proteins in the HEMOLYMPH of MOLLUSKS and ARTHROPODS. They are characterized by two copper atoms, coordinated with HISTIDINE residues, that reversibly bind a single oxygen molecule; they do not contain HEME groups. Hemocyanin,alpha-Haemocyanin,alpha-Hemocyanin,alpha-Hemocyanins,alpha Haemocyanin,alpha Hemocyanin,alpha Hemocyanins
D006458 Hemolymph The blood/lymphlike nutrient fluid of some invertebrates. Hemolymphs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012605 Scorpions Arthropods of the order Scorpiones, of which 1500 to 2000 species have been described. The most common live in tropical or subtropical areas. They are nocturnal and feed principally on insects and other arthropods. They are large arachnids but do not attack man spontaneously. They have a venomous sting. Their medical significance varies considerably and is dependent on their habits and venom potency rather than on their size. At most, the sting is equivalent to that of a hornet but certain species possess a highly toxic venom potentially fatal to humans. (From Dorland, 27th ed; Smith, Insects and Other Arthropods of Medical Importance, 1973, p417; Barnes, Invertebrate Zoology, 5th ed, p503) Scorpion
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

J Markl, and W Gebauer, and R Runzler, and I Avissar
January 1985, Biological chemistry Hoppe-Seyler,
J Markl, and W Gebauer, and R Runzler, and I Avissar
June 1976, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
J Markl, and W Gebauer, and R Runzler, and I Avissar
April 1981, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
J Markl, and W Gebauer, and R Runzler, and I Avissar
March 1979, Archives of biochemistry and biophysics,
J Markl, and W Gebauer, and R Runzler, and I Avissar
July 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
J Markl, and W Gebauer, and R Runzler, and I Avissar
January 1973, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
J Markl, and W Gebauer, and R Runzler, and I Avissar
March 1980, FEBS letters,
J Markl, and W Gebauer, and R Runzler, and I Avissar
April 2002, The Journal of biological chemistry,
Copied contents to your clipboard!