Lipoprotein-heparin-fibronectin-denatured collagen complexes enhance cholesteryl ester accumulation in macrophages. 1984

D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler

The sequestration of low-density lipoprotein (LDL) by components of the vascular extracellular matrix has long been recognized as a contributing factor to lipid accumulation during atherogenesis. The effects, however, that components of the extracellular matrix might have on LDL catabolism by scavenger cells have been little investigated. For these purposes we have prepared insoluble complexes of LDL, heparin, fibronectin, and denatured collagen (gelatin) and examined their effects on lipid accumulation, LDL uptake and degradation, and cholesteryl ester synthesis in mouse peritoneal macrophages. The results of these experiments have demonstrated that the cholesteryl ester content of macrophages incubated with a particular suspension of LDL, heparin, fibronectin, and collagen complexes is four- to fivefold that of cells incubated with LDL alone. The uptake of complexes containing 125I-LDL is rapid; however, in contrast to either endocytosed 125I-LDL or 125I-acetyl LDL, the degradation of complex-derived LDL is impaired. In addition, the uptake of complex-derived LDL stimulates the incorporation of [14C]oleic acid into cholesteryl oleate, however, the stimulation was a small fraction of that observed in cells incubated with acetyl LDL. Ultrastructurally, macrophages incubated with LDL, heparin, fibronectin, and collagen complexes did not contain many lipid droplets, but rather their cytoplasm is filled with phagosomes containing material similar in appearance to LDL-matrix complexes. These results indicate that components of the extracellular matrix can alter the catabolism of LDL by scavenger cells, suggesting that they may play a role in cellular lipid accumulation in the atherosclerotic lesion.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin

Related Publications

D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
July 1985, The American journal of pathology,
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
February 1992, Arteriosclerosis and thrombosis : a journal of vascular biology,
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
January 1985, Proceedings of the National Academy of Sciences of the United States of America,
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
September 1995, Bioscience, biotechnology, and biochemistry,
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
April 1991, Clinical immunology and immunopathology,
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
January 1991, Biochimica et biophysica acta,
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
January 1988, Arteriosclerosis (Dallas, Tex.),
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
September 1996, Arteriosclerosis, thrombosis, and vascular biology,
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
December 1991, The Journal of biological chemistry,
D J Falcone, and N Mated, and H Shio, and C R Minick, and S D Fowler
April 1988, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!