Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17. 1984

W H Mullikin, and J P Jones, and L A Palmer

We examined the spatiotemporal organization of excitatory regions in 197 simple receptive fields from cat area 17 using the peristimulus time response-plane technique of Stevens and Gerstein (53). With this method we observed a striking similarity between the spatiotemporal organization of excitatory regions in simple receptive fields and the excitatory centers in X or Y geniculate receptive fields. This observation suggested to us the possibility that individual simple receptive fields may be differentially innervated by either X or Y geniculate afferents. To test this hypothesis, we devised a quantitative measure that could characterize the excitatory regions in simple receptive fields as being X-like or Y-like. This measure was based on an understanding of the spatiotemporal organization of geniculate X and Y receptive fields. Further evidence supporting this division of simple cells was derived from additional physiological and anatomical comparisons. When compared to Y-like simple cells, X-like simple cells, as a group, gave a more sustained response to standing contrast, had smaller excitatory regions, and preferred slightly slower moving stimuli. A comparison of the properties of end-zone inhibition and directional selectivity showed no additional difference between X-like and Y-like simple cells. We found a correlation between the laminar position of X-like and Y-like simple cells and the known patterns of termination of X and Y geniculate afferents. Y-like simple cells were found in layers III, IVab, and VI, but not in layer IVc, whereas X-like simple cells were found in layer III, all parts of layer IV, and layer VI. Inhibitory regions appeared to play a major role in defining the spatiotemporal structure of simple receptive fields and they further acted to diminish differences between the spatial widths and velocity sensitivities of X-like and Y-like simple cells. These data are discussed in terms of a parallel model of geniculostriate convergence and support the hypothesis that the X and Y systems, which originate in the retina, are maintained in parallel at the level of simple cells in striate cortex.

UI MeSH Term Description Entries
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D011601 Psychophysics The science dealing with the correlation of the physical characteristics of a stimulus, e.g., frequency or intensity, with the response to the stimulus, in order to assess the psychologic factors involved in the relationship. Psychophysic
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

W H Mullikin, and J P Jones, and L A Palmer
January 1998, Visual neuroscience,
W H Mullikin, and J P Jones, and L A Palmer
January 1979, Journal of neurophysiology,
W H Mullikin, and J P Jones, and L A Palmer
January 1977, Brain research,
W H Mullikin, and J P Jones, and L A Palmer
August 1979, The Journal of general physiology,
W H Mullikin, and J P Jones, and L A Palmer
June 1977, The Journal of physiology,
W H Mullikin, and J P Jones, and L A Palmer
January 1987, Experimental brain research,
W H Mullikin, and J P Jones, and L A Palmer
January 1982, Vision research,
W H Mullikin, and J P Jones, and L A Palmer
January 1979, Journal of neurophysiology,
Copied contents to your clipboard!