Effects of trimebutine maleate (TM-906) on electrical and mechanical activities of smooth muscles of the guinea-pig stomach. 1984

K Furukawa, and Y Kimoto

The effects of trimebutine maleate (TM-906) on electrical and mechanical activities of smooth muscles of the guinea-pig stomach were investigated using a microelectrode and isometric tension recording methods. TM-906 (2 X 10(-5) M) depolarized the membrane of smooth muscles in the antrum to about 10 mV. From the current-voltage relationship and changes in membrane potentials in various [K]0, the TM-906-induced depolarization is considered to be mainly due to a decrease in the K-conductance. TM-906 increased the amplitude of the first spike potential and regularized the rhythm of slow waves. These excitatory effects are presumably due to the K-channel-blocking action during the repolarizing phase of the spikes and to the depolarization. TM-906 reduced the amplitudes of mechanical activities and slow waves. These inhibitory effects are presumably due to the inhibition of Ca-release from storage sites and to the block of Ca-influx. The biphasic effects are possibly due to the local anesthetic properties. TM-906 modified neither the membrane potential nor the membrane conductance of circular muscles in the fundus. This may mean that the circular muscles in the fundus lack the K-channel sensitive to TM-906.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011343 Procaine A local anesthetic of the ester type that has a slow onset and a short duration of action. It is mainly used for infiltration anesthesia, peripheral nerve block, and spinal block. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1016). Anuject,Geriocaine,Gerokit,Hewedolor-Procain,Lophakomp-Procain N,Novocain,Novocaine,Procain Braun,Procain Jenapharm,Procain Rödler,Procain Steigerwald,Procain curasan,Procaina Serra,Procaine Hydrochloride,Pröcaine chlorhydrate Lavoisier,Röwo Procain,procain-loges,Hydrochloride, Procaine
D011706 Pyloric Antrum The region between the sharp indentation at the lower third of the STOMACH (incisura angularis) and the junction of the PYLORUS with the DUODENUM. Pyloric antral glands contain mucus-secreting cells and gastrin-secreting endocrine cells (G CELLS). Antrum, Pyloric,Gastric Antrum,Antrum, Gastric,Antrums, Gastric,Antrums, Pyloric,Gastric Antrums,Pyloric Antrums
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

K Furukawa, and Y Kimoto
August 1984, Japanese journal of pharmacology,
K Furukawa, and Y Kimoto
August 1982, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
K Furukawa, and Y Kimoto
February 1984, Japanese journal of pharmacology,
K Furukawa, and Y Kimoto
October 1984, Nihon Heikatsukin Gakkai zasshi,
K Furukawa, and Y Kimoto
December 1998, Journal of autonomic pharmacology,
K Furukawa, and Y Kimoto
May 1989, European journal of pharmacology,
K Furukawa, and Y Kimoto
January 1976, The Japanese journal of physiology,
Copied contents to your clipboard!