Studies on porphyrin metabolism in the kidney. Effects of trace metals and glutathione on renal uroporphyrinogen decarboxylase. 1984

J S Woods, and D L Eaton, and C B Lukens

Uroporphyrinogen (urogen) decarboxylase catalyzes the decarboxylation of 8- to 4-carboxyl porphyrinogen during heme biosynthesis in mammalian tissues. The specific activity of renal urogen decarboxylase was shown to be approximately one-third that of the hepatic enzyme and to be readily inactivated by HgCl2 following acute treatment or at concentrations as low as 50 microM in vitro. HgCl2 differentially inhibited the decarboxylation of 8- to 7- and 7- to lesser-carboxylated porphyrinogens in the kidney, suggesting that at least a two-stage process is involved in the catalytic action of the renal enzyme. In contrast, neither lead nor iron compounds inhibited renal urogen decarboxylase in concentrations as high as 1 mM in the reaction mixture. GSH increased renal but not hepatic urogen decarboxylase activity by over 4-fold in vitro when measured as total porphyrinogen products produced, and preferentially accelerated the decarboxylation of 7- to 4-carboxyl porphyrinogen. GSH also protected the renal enzyme from HgCl2 inhibition. These findings suggest that renal urogen decarboxylase catalyzes porphyrin decarboxylation significantly less rapidly than the hepatic enzyme, is readily inactivated by mercuric chloride, and may be GSH-dependent with respect to achieving optimal catalytic activity. These observations may be useful in characterizing the contribution of the kidney to the clinical manifestations of the inherited porphyrias and environmentally induced disorders of porphyrin metabolism.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008627 Mercuric Chloride Mercury chloride (HgCl2). A highly toxic compound that volatizes slightly at ordinary temperature and appreciably at 100 degrees C. It is corrosive to mucous membranes and used as a topical antiseptic and disinfectant. Mercury Dichloride,Corrosive Sublimate,HgCl2,Mercuric Perchloride,Mercury Bichloride,Mercury Perchloride,Sublimate,Bichloride, Mercury,Chloride, Mercuric,Dichloride, Mercury,Perchloride, Mercuric,Perchloride, Mercury,Sublimate, Corrosive
D011165 Porphyrinogens Colorless reduced precursors of porphyrins in which the pyrrole rings are linked by methylene (-CH2-) bridges.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

J S Woods, and D L Eaton, and C B Lukens
November 1981, Biochemical and biophysical research communications,
J S Woods, and D L Eaton, and C B Lukens
June 1958, The Journal of biological chemistry,
J S Woods, and D L Eaton, and C B Lukens
October 1969, FEBS letters,
J S Woods, and D L Eaton, and C B Lukens
September 1991, The Biochemical journal,
J S Woods, and D L Eaton, and C B Lukens
January 2001, Journal of viral hepatitis,
J S Woods, and D L Eaton, and C B Lukens
February 1989, European journal of biochemistry,
J S Woods, and D L Eaton, and C B Lukens
February 2007, Canadian journal of microbiology,
J S Woods, and D L Eaton, and C B Lukens
January 1987, Annals of the New York Academy of Sciences,
J S Woods, and D L Eaton, and C B Lukens
January 1982, Enzyme,
Copied contents to your clipboard!