Analysis of the mechanism of ATP stimulation of calf thymus DNA alpha-polymerase. 1984

K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara

Biochemical kinetic analyses of the ATP stimulation of the A2 form of calf DNA alpha-polymerase show that when DNA or primer termini are the variable substrates, maximum reaction velocity is independent of ATP concentration. When dNTP concentration is the variable substrate, the apparent Km is invariant with ATP. Such results indicate that the increase in the synthetic rate caused by ATP results from an improvement in synthesis initiation at primer termini. The effect of ATP on the DNA binding affinity of alpha-A2-polymerase was examined by using column chromatography. Passage of the polymerase through native DNA-cellulose at 70 mM ionic strength resulted in 40% binding of the enzyme. In the presence of 4 mM ATP, binding increased to 80%. In both cases, the bound polymerase could be eluted by a 370 mM ionic strength wash. An elution profile similar to that observed in the absence of ATP was obtained with 0.1 mM ATP, 4 mM GTP, or 4 mM each of the nonhydrolyzable ATP analogues adenyl-5'-yl imidodiphosphate or adenosine 5'-O-(3-thiotriphosphate). These results suggest that hydrolysis of the gamma-phosphate occurs at millimolar levels of ATP and leads to a higher affinity of polymerase for DNA. To distinguish the effects of ATP on RNA priming from those on DNA synthesis, products synthesized processively by alpha-A2-polymerase were sized by gel filtration. Results indicate that essentially all products made on a gapped fd replicative form template in the presence of four dNTPs and 4 mM ATP result from the extension of preexisting DNA primers.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002482 Cellulose A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations. Alphacel,Avicel,Heweten,Polyanhydroglucuronic Acid,Rayophane,Sulfite Cellulose,alpha-Cellulose,Acid, Polyanhydroglucuronic,alpha Cellulose
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000266 Adenylyl Imidodiphosphate 5'-Adenylic acid, monoanhydride with imidodiphosphoric acid. An analog of ATP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It is a potent competitive inhibitor of soluble and membrane-bound mitochondrial ATPase and also inhibits ATP-dependent reactions of oxidative phosphorylation. Adenyl Imidodiphosphate,gamma-Imino-ATP,AMP-PNP,AMPPNP,ATP(beta,gamma-NH),Adenosine 5'-(beta,gamma-Imino)triphosphate,Adenylimidodiphosphate,Adenylylimidodiphosphate,Mg AMP-PNP,Mg-5'-Adenylylimidodiphosphate,beta,gamma-imido-ATP,gamma-Imido-ATP,AMP-PNP, Mg,Imidodiphosphate, Adenyl,Imidodiphosphate, Adenylyl,Mg 5' Adenylylimidodiphosphate,Mg AMP PNP,beta,gamma imido ATP,gamma Imido ATP,gamma Imino ATP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA

Related Publications

K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
March 1987, Nucleic acids research,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
February 1994, Biochemical and biophysical research communications,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
June 1991, The Journal of biological chemistry,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
February 1985, The Journal of biological chemistry,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
March 1980, Molecular pharmacology,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
October 1995, Nucleic acids research,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
May 1987, Biochemistry,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
January 1976, Nucleic acids research,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
December 1983, Biochimica et biophysica acta,
K G Lawton, and J V Wierowski, and S Schechter, and R Hilf, and R A Bambara
January 1984, Advances in experimental medicine and biology,
Copied contents to your clipboard!