Division of peribacteroid membranes in root nodules of white clover. 1984

J G Robertson, and P Lyttleton

Division of peribacteroid membranes in the cytoplasm of root nodules of white clover was found, from a study of serial thin sections prepared for electron microscopy, to accompany division of the bacteroids. It was also observed that the peribacteroid membranes appeared to have adhered to various sites on the surface of the bacteroid envelope outer membranes. Wherever peribacteroid membranes were constricted as though undergoing division in the region of the cleft formed by partial division of the bacteroids, these constrictions could be related to the point of adhesion of the peribacteroid membranes to the surface of the bacteroids within the cleft. It was concluded that adhesion of the peribacteroid membranes to the bacteroid envelope outer membranes is likely to be a critical element in the process of division of the peribacteroid membranes. Differences in the degree of adhesion between peribacteroid membranes and the bacteroid envelope outer membranes may explain variations in the number of bacteroids enclosed by peribacteroid membranes in nodules of different legumes.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010935 Plant Diseases Diseases of plants. Disease, Plant,Diseases, Plant,Plant Disease
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
D013559 Symbiosis The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other. Endosymbiosis,Commensalism,Mutualism

Related Publications

J G Robertson, and P Lyttleton
September 2005, Journal of chemical ecology,
J G Robertson, and P Lyttleton
September 1996, Trends in microbiology,
J G Robertson, and P Lyttleton
August 1995, The New phytologist,
J G Robertson, and P Lyttleton
July 1991, Plant physiology,
J G Robertson, and P Lyttleton
August 1988, Archives of biochemistry and biophysics,
J G Robertson, and P Lyttleton
February 1986, Proceedings of the National Academy of Sciences of the United States of America,
J G Robertson, and P Lyttleton
February 2000, Molecular plant-microbe interactions : MPMI,
J G Robertson, and P Lyttleton
January 2011, Prikladnaia biokhimiia i mikrobiologiia,
Copied contents to your clipboard!