Postnatal development of primary visual projections in the tammar wallaby (Macropus eugenii). 1984

J Wye-Dvorak

The time course and pattern of retinal innervation of primary visual areas was traced in pouch-young wallabies. Tritiated proline was injected into one eye of animals ranging in age from 1 to 72 days after birth. These results are compared to the 11 primary visual areas found in the adult wallaby, seven of which receive binocular input while four are monocular. At birth retinal ganglion cell axons have not reached any visual areas. Two to 4 days after birth, all of the axons are crossing to the contralateral optic tract. Nine to 12 days after birth axons begin to invade the contralateral lateral geniculate nucleus, the superior colliculus, and the medial terminal nucleus. Twenty to 21 days after birth, ipsilateral axons invade the lateral geniculate nucleus and superior colliculus. The contralateral projection precedes the ipsilateral projection in all binocular visual areas. By 25 days, ipsilateral and contralateral afferents share common territory in the lateral geniculate nucleus; however, afferents from each eye are initially concentrated in appropriate areas. Between 52 and 72 days, afferents to the dorsal lateral geniculate nucleus are gradually segregated into nine terminal bands. Four are contralateral while five are ipsilateral. By 72 days, the ipsilateral component to the superior colliculus is clustered beneath the contralateral projection a deeper layer. Projections to four monocular visual areas--lateral posterior nucleus, dorsal terminal nucleus, lateral terminal nucleus, and nucleus of the optic tract--are established later than binocular visual areas, except the suprachiasmatic nucleus. The suprachiasmatic nucleus is the last to be bilaterally innervated even though it is situated closest to the optic chiasm. At the light microscope level a mature pattern of visual development is emerging by 72 days, although the eyes do not open until 140 days.

UI MeSH Term Description Entries
D007614 Macropodidae A family of herbivorous leaping MAMMALS of Australia, New Guinea, and adjacent islands. Members include kangaroos, wallabies, quokkas, and wallaroos. Kangaroos,Macropus,Petrogale,Quokkas,Setonix,Wallabies,Wallabies, Rock,Wallaroo,Macropus robustus,Kangaroo,Petrogales,Quokka,Rock Wallabies,Rock Wallaby,Wallaby,Wallaby, Rock,Wallaroos
D008394 Marsupialia An infraclass of MAMMALS, also called Metatheria, where the young are born at an early stage of development and continue to develop in a pouch (marsupium). In contrast to Eutheria (placentals), marsupials have an incomplete PLACENTA. Metatheria,Marsupials,Marsupial
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D013493 Suprachiasmatic Nucleus An ovoid densely packed collection of small cells of the anterior hypothalamus lying close to the midline in a shallow impression of the OPTIC CHIASM. Hypothalamic Suprachiasmatic Nuclei,Hypothalamic Suprachiasmatic Nucleus,Suprachiasmatic Nuclei,Suprachiasmatic Nuclei, Hypothalamic,Suprachiasmatic Nucleus, Hypothalamic
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

J Wye-Dvorak
March 2021, Reproduction (Cambridge, England),
J Wye-Dvorak
February 1997, Australian veterinary journal,
J Wye-Dvorak
January 1997, Reproduction, fertility, and development,
J Wye-Dvorak
December 2009, Cold Spring Harbor protocols,
J Wye-Dvorak
December 2009, Cold Spring Harbor protocols,
Copied contents to your clipboard!