Functional organization of mouse and rat SmI barrel cortex following vibrissal damage on different postnatal days. 1984

D J Simons, and D Durham, and T A Woolsey

This study was undertaken to determine the functional properties of neurons in the anatomically altered somatosensory cortex after neonatal whisker damage. In mice and rats neonatal lesions of the facial vibrissae change the anatomical organization of barrels in the contralateral SmI cortex. These changes depend on the pattern and severity of the peripheral damage and the developmental age of the animals. To understand some of the functional correlates of these anatomical changes, the middle row of vibrissae (row C) was damaged in mice on postnatal days 1, 3, and 5 and in rats on postnatal days 1 and 5. The receptive field properties of single cortical units were studied after the animals matured. In 24 mice and 15 rats a total of 1,370 units were characterized in microelectrode penetrations which passed through the somatosensory cortex either tangential or perpendicular to the pia. Units were localized anatomically with respect to both barrel and laminar boundaries, and the extent of the peripheral damage was assessed histologically. The data revealed an orderly representation of the sensory periphery that coincided with the altered cytoarchitectonic organization of the SmI cortex. Specifically: (1) Units in the enlarged row B or row D barrels responded primarily to row B or row D whiskers. (2) In layer IV, units in the altered row C cortex either could not be reliably driven from the periphery, were activated by stimulation of scar tissue in the damaged facial row C, or were driven by adjacent, intact row B or row D whiskers. (3) Units in supra- and infragranular layers either had no row C representation or incorporated scar tissue in their receptive fields in a topographically correct fashion. Responses of units to stimulation of scar tissue were qualitatively similar to those elicited from intact vibrissae, which also activated them. (4) In SmII, units that responded to whiskers had receptive fields whose organization matched the representation of the periphery observed in SmI. (5) There was no mapping of nonmystacial pad structures in the barrel cortex, and there were no units with abnormal multiwhisker interactions when laminar boundaries were taken into account. These data indicate that neonatal damage to the whiskers alters both the anatomical arrangement of the barrels and the physiologically determined somatotopic representation of the sensory periphery in a parallel and predictable fashion.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002921 Cicatrix The fibrous tissue that replaces normal tissue during the process of WOUND HEALING. Scars,Cicatrization,Scar,Scarring
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005260 Female Females
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary

Related Publications

D J Simons, and D Durham, and T A Woolsey
March 1981, The Journal of comparative neurology,
D J Simons, and D Durham, and T A Woolsey
April 1979, Brain research,
D J Simons, and D Durham, and T A Woolsey
November 1976, The Journal of comparative neurology,
D J Simons, and D Durham, and T A Woolsey
July 1989, The Journal of comparative neurology,
D J Simons, and D Durham, and T A Woolsey
August 1985, The Journal of comparative neurology,
D J Simons, and D Durham, and T A Woolsey
January 1993, Acta neurobiologiae experimentalis,
D J Simons, and D Durham, and T A Woolsey
December 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D J Simons, and D Durham, and T A Woolsey
June 1975, Proceedings of the National Academy of Sciences of the United States of America,
D J Simons, and D Durham, and T A Woolsey
November 1984, The Journal of comparative neurology,
Copied contents to your clipboard!