Recombination in adenovirus: analysis of crossover sites in intertypic overlap recombinants. 1984

V Mautner, and N Mackay

Overlap recombination has been used as a means of generating intertypic recombinants with crossover sites located within a defined region of the adenovirus genome. Using terminal DNA fragments of adenovirus type 2 and type 5 that overlap within the vicinity of the hexon coding region (51.6-59.7 map units), two different crosses could be studied; in one the overlap entirely encompasses the hexon and there are homologous regions at either side of the overlap where recombination is expected, and in the other only one side of the overlap is capable of sustaining recombination. The overall distribution of crossover sites within the overlap has been determined by restriction endonuclease mapping, and analysed in terms of the extent of homology between Ad2 and Ad5 in this region as defined by the DNA sequences (R. Kinloch, N. Mackay, and V. Mautner (1984). J. Biol. Chem., 259, 6431-6436; G. Akusjärvi, P. Aleström, M. Pettersson, M. Lager, H. Jörnvall, and U. Pettersson (1984). Submitted). Crossovers are found only in regions of relatively high DNA homology, as previously shown for intertypic recombination between temperature-sensitive viruses (M. E. G. Boursnell and V. Mautner (1981). Virology 112, 198-209). The presence of a free DNA end within the heterologous zone is insufficient to overcome the barrier to recombination. In crosses where recombination is confined to a relatively small homologous zone (45.9-53.0 mu) there is no special distribution of crossovers within the interval; no "hot spot" is discernible at the free DNA end, suggesting that a free DNA end is not especially recombinogenic, nor at the junction between the homologous and heterologous zones, suggesting that branch migration up to the heterology does not always occur. A cross designed to furnish evidence for gene conversion gave rise to a "conventional" recombinant with a crossover located within a 21-nucleotide tract of homology.

UI MeSH Term Description Entries
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005785 Gene Conversion The asymmetrical segregation of genes during replication which leads to the production of non-reciprocal recombinant strands and the apparent conversion of one allele into another. Thus, e.g., the meiotic products of an Aa individual may be AAAa or aaaA instead of AAaa, i.e., the A allele has been converted into the a allele or vice versa. Polar Recombination,Polaron,Conversion, Gene,Conversions, Gene,Gene Conversions,Polar Recombinations,Polarons,Recombination, Polar,Recombinations, Polar
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000260 Adenoviruses, Human Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-G. APC Viruses,APC Virus,Adenovirus, Human,Human Adenovirus,Human Adenoviruses
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

V Mautner, and N Mackay
January 1979, Cold Spring Harbor symposia on quantitative biology,
V Mautner, and N Mackay
May 1980, The Journal of general virology,
V Mautner, and N Mackay
January 1991, Proceedings of the National Academy of Sciences of the United States of America,
V Mautner, and N Mackay
February 1993, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!