Kinetic mechanism of phosphoenolpyruvate carboxykinase (GTP) from rat liver cytosol. Product inhibition, isotope exchange at equilibrium, and partial reactions. 1978

M Jomain-Baum, and V L Schramm

Initial velocity studies of rat liver cytosolic P-enolpyruvate carboxykinase in the direction of P-enolpyruvate formation gave intersecting double reciprocal plots indicating that the reaction conforms to a sequential reaction pathway. A complete product inhibition study with MnGDP-, P-enolpyruvate, and HCO3- as product inhibitors indicated that all patterns were noncompetitive. Isotope exchange at equilibrium with exchange between the substrate/product pairs GTP/GDP oxalacetate/HCO3-, and oxalacetate/P-enolpyruvate while varying the concentration of substrate/product pairs in fixed constant ratio gave no complete inhibitory patterns as the concentration of the constant ratio pairs approached saturation. The exchange rates between the substrate/product pairs differed by a factor of 40 when compared under the same assay conditions. These results were interpreted in terms of a random reaction mechanism in which true dead-end complexes do not form and in which the rate-limiting step is not the interconversion of the ternary quarternary central complexes. In addition to the formation of P-enolpyruvate from oxalacetate and MnGTP2-, the enzyme catalyzes the decarboxylation of oxalacetate to pyruvate in the absence of MnGTP2-. This reaction occurs only slowly in the absence of GDP and most rapidly in the presence of MnGDP-. When only MnGTP2- and oxalacetate are present, no pyruvate is formed, and oxalacetate is converted stoichiometrically to P-enolpyruvate. The enzyme also catalyzes the exchange of [14C]GDP into GTP in the absence of P-enolpyruvate. This exchange is stimulated by the presence of HCO3-. When enzyme is incubated with MnGTP2- in the presence or absence of HCO3-, there is no hydrolysis to form GDP and P1. The two partial reactions, namely the exchange of [14C]GDP with the E.HCO3.MnGTP or E.MnGTP complex and the formation of pyruvate from the E.oxalacetate.MnGDP complex provide pathways by which the expected dead-end complexes can be converted to enzyme forms which can return to the catalytic or exchange sequence.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Jomain-Baum, and V L Schramm
January 1978, The International journal of biochemistry,
M Jomain-Baum, and V L Schramm
September 1980, The Journal of biological chemistry,
M Jomain-Baum, and V L Schramm
July 1970, Canadian journal of biochemistry,
M Jomain-Baum, and V L Schramm
January 1993, Biochimica et biophysica acta,
Copied contents to your clipboard!