In vivo effect of colchicine on hepatic protein synthesis and on the conversion of proalbumin to serum albumin. 1978

C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green

Treatment of rats with 0.5-25 mumol/100 g body weight of colchicine for 1 h or more caused an inhibition of hepatic protein synthesis. This effect was not seen if animals were exposed to colchicine for less than 1 h. The delayed inhibition of protein synthesis affected both secretory and nonsecretory proteins. Treatment with colchicine (15 mumol/100 g) for 1 h or more caused the RNA content of membrane-bound polysomes to fall but did not change the polysomal profile of this fraction. By contrast, the total RNA content in the free polysome cell fraction was increased, and this was due to the presence of more ribosomal monomers and dimers. Electron microscope examination of the livers from rats treated for 3 h with colchicine showed an accumulation of secretory vesicles within the hepatocytes and a general distention of the endoplasmic reticulum. Administration of radioactive L-leucine to the rats led to an incorporation of radioactivity into two forms of intracellular albumin which were precipitable with antiserum to rat serum albumin but which were separable by diethylaminoethyl-cellulose chromatography. One form has arginine at the amino-terminal position and is proalbumin, and the other form, which more closely resembles serum albumin chromatographically, has glutamic acid at its amino terminus. Only proalbumin was found in rough and smooth endoplasmic reticulum fractions and in a Golgi cell fraction wich corresponds morphologically to mostly empty and partially filled secretory vesicles. However, in other Golgi cell fractions which were filled with secretory products, both radioactive proalbumin and serum albumin were found. This indicates that proalbumin is converted to serum albumin in these secretory vesicles just before exocytosis. Colchicine delayed the discharge of radioactive albumin from these filled secretory vesicles and caused an accumulation of both proalbumin and serum albumin within these cell fractions.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D011228 Prealbumin A tetrameric protein, molecular weight between 50,000 and 70,000, consisting of 4 equal chains, and migrating on electrophoresis in 3 fractions more mobile than serum albumin. Its concentration ranges from 7 to 33 per cent in the serum, but levels decrease in liver disease. Proalbumin,Transthyretin
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012709 Serum Albumin A major protein in the BLOOD. It is important in maintaining the colloidal osmotic pressure and transporting large organic molecules. Plasma Albumin,Albumin, Serum
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
August 1988, Journal of biochemistry,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
March 1982, Biochemical and biophysical research communications,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
September 1976, Biochemical and biophysical research communications,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
November 1985, European journal of biochemistry,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
January 1978, Nature,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
October 1981, Biochimica et biophysica acta,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
October 1997, Biochimica et biophysica acta,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
August 1977, Biochemical and biophysical research communications,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
January 1983, Methods in enzymology,
C M Redman, and D Banerjee, and C Manning, and C Y Huang, and K Green
August 1989, The Journal of biological chemistry,
Copied contents to your clipboard!