Electron microscopic demonstration of a supraependymal cluster of neuronal cells and processes in the hamster third ventricle. 1978

J P Card, and J A Mitchell

A supraependymal cluster of neuronal cells and processes consistently present on the floor of the hamster third ventricle was identified and characterized by means of correlative scanning (SEM) and transmission (TEM) electron microscopy. SEM revealed each cluster to be ovoid with the majority of its surface covered by dome-shaped protrusions and fine beaded fibers. A number of processes traveling individually or in groups also entered or exited from the cluster at its base. As these processes passed over the ventricular surface, they contributed to an extensive network on the floor and ventral aspect of the ventricular wall. Some processes terminated on the ependymal surface in bulbous endings while others penetrated the ependyma. The neuronal nature of these clusters and their associated processes was confirmed at the TEM level. The dome-shaped protrusions visible on the surface of the cluster in SEM corresponded to apical surfaces of neurons confined to the peripheral aspect of a core of loosely arranged processes. These cells exhibited a prominent nucleolus, stacks of rough endoplasmic reticulum (RER), polyribosomes, Golgi cisternae, mitochondria and microtubules (MT) and gave rise to dendritic processes which extended into the core. These dendrites gave off branches at acute angles and contained polyribosomes, single cisternae of RER and evenly spaced MT. Other profiles of processes within the core shared these characteristics, suggesting that they also were branches of the peripheral cells. Axons present within the core and on the cluster's surface exhibited vesicle-filled varicosities which frequently established synaptic contact with the peripheral cells and their processes. The presence of an intraventricular cluster of neurons which potentially communicates with centers extrinsic to the ventricle may have important implications in the hypothesized role of cerebrospinal fluid and tanycytic ependyma in the neuroendocrine regulation of anterior pituitary function.

UI MeSH Term Description Entries
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D002555 Cerebrospinal Fluid A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES. Cerebro Spinal Fluid,Cerebro Spinal Fluids,Cerebrospinal Fluids,Fluid, Cerebro Spinal,Fluid, Cerebrospinal,Fluids, Cerebro Spinal,Fluids, Cerebrospinal,Spinal Fluid, Cerebro,Spinal Fluids, Cerebro
D004805 Ependyma A thin membrane that lines the CEREBRAL VENTRICLES and the central canal of the SPINAL CORD. Ependymas
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J P Card, and J A Mitchell
January 1989, Zeitschrift fur mikroskopisch-anatomische Forschung,
J P Card, and J A Mitchell
April 1973, The American journal of anatomy,
J P Card, and J A Mitchell
January 1982, Anatomischer Anzeiger,
J P Card, and J A Mitchell
January 1998, Journal of submicroscopic cytology and pathology,
J P Card, and J A Mitchell
February 1978, The Anatomical record,
J P Card, and J A Mitchell
July 1977, The Journal of comparative neurology,
Copied contents to your clipboard!