Growth pattern of axons in the optic nerve of chick during myelogenesis. 1978

E A Arees

The purpose of this experiment was to study the diameter of axons at the time of the initiation of myelin and the pattern of growth of axons in the optic nerve of the chick. Embryos between 15 and 20 days and chicks 3, 5, 22 and 60 days of age were studied on the electron microscopic level. Based on axon diameter a unimodal distribution of unmyelinated axons is present through day 20 of incubation with a mean of approximately 0.35 micrometer. This population is represented through 22 days of age but from day 3 on, a second distinct population of unmyelinated axons is present which has a mean diameter that is approximately twice that of the smaller unmyelinated axons. All axons do not increase simultaneously in diameter but once growth starts, the unmyelinated axons apparently double in diameter at a relatively rapid rate prior to myelination. On incubation day 17 less than 1% of the axons in the optic nerve is myelimated. The number of axons in this group and their diameter (mean approximately 1.2 micrometer) remain relatively constant through day 3 but from days 5 through 22, two distinct populations of myelinated axons are present. By day 60, three distinct distributions of myelinated axons are present with mean diameters of 0.51 micrometer, 1.76 micrometer, and 3.90 micrometer. These populations represent approximately 20%, 67%, and 13% respectively of the total fiber population. As age increases the diameter of some myelinated axons is as small as or smaller than the unmyelinated axons at an earlier period in development. This suggests that factors other than axon diameter might be involved in the start of myelination. It appears that the increase in axon diameter does not occur in a continuous manner but in a saltatory manner from one size to another.

UI MeSH Term Description Entries
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
Copied contents to your clipboard!