Hexokinase in developing rabbit erythroid cells. 1984

M Magnani, and V Stocchi, and M Dachà, and G Fornaini

The activity and isozyme distribution of hexokinase were studied in bone marrow cells from normal and anemic rabbits separated by density centrifugation or by unit-gravity sedimentation. The specific activity of the enzyme was found to be about 150-fold higher in the basophilic erythroblasts as compared with the mature circulating erythrocytes. Most of the falls in hexokinase activity take place when the cell completes its final division and matures from the polychromatic stage to the orthochromatic stage. Concomitant with this strong decrease in enzyme activity, qualitative as well as quantitative changes in the hexokinase isozymic pattern become apparent. While in the basophilic and polychromatic erythroblasts the only hexokinase isozyme present is hexokinase type I, the orthochromatic cells also contain hexokinase Ib. This last isozymic form, which increases further at the reticulocyte stage, is also present in the circulating reticulocytes but not in mature red blood cells.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002498 Centrifugation Process of using a rotating machine to generate centrifugal force to separate substances of different densities, remove moisture, or simulate gravitational effects. It employs a large motor-driven apparatus with a long arm, at the end of which human and animal subjects, biological specimens, or equipment can be revolved and rotated at various speeds to study gravitational effects. (From Websters, 10th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D004900 Erythroblasts Immature, nucleated ERYTHROCYTES occupying the stage of ERYTHROPOIESIS that follows formation of ERYTHROID PRECURSOR CELLS and precedes formation of RETICULOCYTES. The normal series is called normoblasts. Cells called MEGALOBLASTS are a pathologic series of erythroblasts. Erythrocytes, Nucleated,Normoblasts,Proerythroblasts,Pronormoblasts,Erythroblast,Erythrocyte, Nucleated,Normoblast,Nucleated Erythrocyte,Nucleated Erythrocytes,Proerythroblast,Pronormoblast
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D006593 Hexokinase An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1. Hexokinase A,Hexokinase D,Hexokinase II
D000740 Anemia A reduction in the number of circulating ERYTHROCYTES or in the quantity of HEMOGLOBIN. Anemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Magnani, and V Stocchi, and M Dachà, and G Fornaini
June 1980, The Journal of biological chemistry,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
January 2002, Acta haematologica,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
September 1984, Bollettino della Societa italiana di biologia sperimentale,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
December 1976, The Biochemical journal,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
August 1977, British journal of haematology,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
November 1978, Israel journal of medical sciences,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
May 1996, The Journal of physiology,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
January 2003, Cell biology international,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
April 1981, Tsitologiia,
M Magnani, and V Stocchi, and M Dachà, and G Fornaini
March 1980, Tsitologiia,
Copied contents to your clipboard!