Single neuron activity in dorsolateral prefrontal cortex of monkey during operant behavior sustained by food reward. 1984

T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo

The activity of 190 neurons was recorded from the dorsolateral prefrontal cortex of monkeys during an operant task that consisted of 3 phases: visual discrimination of food and non-food, bar pressing to gain access to the food and ingestion. In area 8, a fairly large proportion of the 49 recorded neurons responded in both the visual discrimination (37%) and motor initiation (35%) phases. Some functional heterogeneity seems evident within area 8 since visual discrimination responses were rostral, visuokinesis was central and motor initiation was in the caudal bank of the arcuate sulcus. Neurons in area 9 responded primarily (37%) during the bar pressing phase and less during the visual discrimination phase. Neurons in area 10 responded variously during most phases of the task--food discrimination, bar pressing, and ingestion. Neurons in the periprincipal sulcal area usually responded in the visual discrimination phase, but some which did not respond to food presented in front of the subject responded to meaningful visual or auditory cues that were related to food reward. The data suggest that neurons in the dorsolateral prefrontal cortex have multiple functions related to all phases of complex, learned feeding behavior. Functional roles of the prefrontal cortex and the lateral hypothalamus in development of feeding behavior are discussed.

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012201 Reward An object or a situation that can serve to reinforce a response, to satisfy a motive, or to afford pleasure. Rewards

Related Publications

T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
February 1985, Brain research,
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
November 1983, Brain research,
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
November 2011, Cerebral cortex (New York, N.Y. : 1991),
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
February 1980, Brain research,
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
October 2003, The European journal of neuroscience,
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
June 2005, Neuroscience and behavioral physiology,
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
June 1982, Behavioural brain research,
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
December 1986, Brain research bulletin,
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
October 2008, Experimental brain research,
T Ono, and H Nishino, and M Fukuda, and K Sasaki, and H Nishijo
July 1997, Neuroscience letters,
Copied contents to your clipboard!