Independence of myocardial oxygen consumption from pressure-volume trajectory during diastole in canine left ventricle. 1984

H Suga, and Y Goto, and O Yamada, and Y Igarashi

We have found that myocardial oxygen consumption is linearly correlated with the systolic pressure-volume area in the canine left ventricle. This pressure-volume area is a specific area in the pressure-volume diagram that is circumscribed by the end-systolic pressure-volume relation line, the end-diastolic pressure-volume relation curve, and the systolic segment of the pressure-volume trajectory. This area is equivalent to the total mechanical energy generated by ventricular contraction, consisting of the external mechanical work and the mechanical potential energy. In the present study, we specifically changed the course of the diastolic segment of the pressure-volume trajectory without changing the systolic segment of the pressure-volume trajectory and the systolic pressure-volume area. Although the fractions of external mechanical work and mechanical potential energy in the pressure-volume area were markedly changed, the simultaneously measured left ventricular oxygen consumption remained unchanged. This result indicates that the myocardial oxygen consumption is predominantly determined by the total mechanical energy generated during systole, or the systolic pressure-volume area, independent of how the total mechanical energy is converted effectively to external mechanical work during the cardiac cycle.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002306 Cardiac Volume The volume of the HEART, usually relating to the volume of BLOOD contained within it at various periods of the cardiac cycle. The amount of blood ejected from a ventricle at each beat is STROKE VOLUME. Heart Volume,Cardiac Volumes,Heart Volumes,Volume, Cardiac,Volume, Heart,Volumes, Cardiac,Volumes, Heart
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic

Related Publications

H Suga, and Y Goto, and O Yamada, and Y Igarashi
March 1969, Circulation research,
H Suga, and Y Goto, and O Yamada, and Y Igarashi
April 1970, Biophysical journal,
H Suga, and Y Goto, and O Yamada, and Y Igarashi
September 1971, Circulation research,
H Suga, and Y Goto, and O Yamada, and Y Igarashi
February 1995, The American journal of physiology,
H Suga, and Y Goto, and O Yamada, and Y Igarashi
March 1961, Circulation research,
H Suga, and Y Goto, and O Yamada, and Y Igarashi
April 1976, Kokyu to junkan. Respiration & circulation,
H Suga, and Y Goto, and O Yamada, and Y Igarashi
August 2001, American journal of physiology. Heart and circulatory physiology,
H Suga, and Y Goto, and O Yamada, and Y Igarashi
April 1989, The Journal of thoracic and cardiovascular surgery,
Copied contents to your clipboard!