Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. 1984

T Maruyama, and P A Fuerst

A simple numerical method was developed for the mean number and average age of alleles in a population that was initiated with no genetic variation following a sudden population expansion. The methods are used to examine the question of whether allele numbers are elevated compared with values seen in equilibrium populations having equivalent gene diversity. Excess allele numbers in expanding populations were found to be the rule. This was true whether the population began with zero variation or with low levels of variation in either of two initial distributions (initially an equilibrium allele frequency distribution or initially with loci occurring in only two classes of variation). Although the increase of alleles may persist for only a short time, when compared with the time which is required for approach to final equilibrium, the increase may be long when measured in absolute generation numbers. The pattern of increase in very rare alleles (those present only once in a sample) and the persistence of the original allele were also investigated.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D011158 Population Growth Increase, over a specific period of time, in the number of individuals living in a country or region. Population Explosion,Baby Boom,Baby Bust,High Fertility Population,Natural Increase,Past Trends,Population Growth and Natural Resources,Population Size and Growth,Zero Population Growth,Baby Booms,Baby Busts,Explosion, Population,Explosions, Population,Growth, Population,High Fertility Populations,Increase, Natural,Increases, Natural,Natural Increases,Past Trend,Population Explosions,Population, High Fertility,Populations, High Fertility,Trend, Past,Trends, Past
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D005787 Gene Frequency The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION. Allele Frequency,Genetic Equilibrium,Equilibrium, Genetic,Allele Frequencies,Frequencies, Allele,Frequencies, Gene,Frequency, Allele,Frequency, Gene,Gene Frequencies
D005828 Genetics, Population The discipline studying genetic composition of populations and effects of factors such as GENETIC SELECTION, population size, MUTATION, migration, and GENETIC DRIFT on the frequencies of various GENOTYPES and PHENOTYPES using a variety of GENETIC TECHNIQUES. Population Genetics
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic

Related Publications

T Maruyama, and P A Fuerst
December 1991, Mathematical biosciences,
T Maruyama, and P A Fuerst
January 1993, Archives de l'Institut Pasteur de Tunis,
T Maruyama, and P A Fuerst
January 1978, Progress in clinical and biological research,
T Maruyama, and P A Fuerst
November 2011, Bioinformatics (Oxford, England),
T Maruyama, and P A Fuerst
May 2016, Journal of theoretical biology,
Copied contents to your clipboard!