Comparative effects of cholestanol and cholesterol on hepatic sterol and bile acid metabolism in the rat. 1984

S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz

Large amounts of cholestanol, the 5 alpha-dihydro derivative of cholesterol are found in tissues of patients with the rare inherited sterol storage disease cerebrotendinous xanthomatosis. Although small amounts of cholestanol are present in virtually every tissue of normal man, little is known about its metabolism and effect on cholesterol and bile acid formation. The purpose of this study is to investigate the absorption and metabolism of cholestanol and its early effects on hepatic morphology and on the rate-limiting enzymes of cholesterol and bile acid biosynthesis. After 2 wk on a diet supplemented with 2% cholestanol, total liver sterol content increased by 48% (3.26 vs. 2.20 mg/g), and resulted in a significant rise in hepatic cholestanol concentration to 1.4 mg/g. However, cholestanol was less efficiently absorbed from the intestine than cholesterol and interfered with cholesterol absorption. Furthermore, hepatic hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase activity rose 2.6-fold (from 150.3 to 397.0 pmol/mg per min) during cholestanol feeding, and was associated with a marked proliferation of the smooth endoplasmic reticulum of the centrilobular areas. In addition, significant amounts of allocholic acid (16%) and allochenodeoxycholic acid (5%) were formed from cholestanol and excreted in the bile. These results show that cholestanol is absorbed from the intestine, interferes with cholesterol absorption, and is deposited in the liver. However, in contrast to cholesterol, cholestanol feeding was associated with a marked elevation of HMG-CoA reductase activity. Thus, despite structural similarity between cholesterol and its 5 alpha-saturated derivative, cholestanol does not exert feedback inhibition on hepatic cholesterol biosynthesis.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002777 Cholestanols Cholestanes substituted in any position with one or more hydroxy groups. They are found in feces and bile. In contrast to bile acids and salts, they are not reabsorbed. Bile Alcohol,Bile Alcohols,Hydroxycholestane,Hydroxycholestanes,Alcohol, Bile,Alcohols, Bile
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002790 Cholesterol 7-alpha-Hydroxylase A membrane-bound cytochrome P450 enzyme that catalyzes the 7-alpha-hydroxylation of CHOLESTEROL in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP7, converts cholesterol to 7-alpha-hydroxycholesterol which is the first and rate-limiting step in the synthesis of BILE ACIDS. CYP7,CYP7A,Cytochrome P-450 CYP7,CYP 7,CYP 7A,Cholesterol 7-alpha-Monooxygenase,Cholesterol 7alpha-Hydroxylase,Cholesterol-7-Hydroxylase,Cytochrome P450 7,Cholesterol 7 Hydroxylase,Cholesterol 7 alpha Hydroxylase,Cholesterol 7 alpha Monooxygenase,Cholesterol 7alpha Hydroxylase,Cytochrome P 450 CYP7
D006903 Hydroxymethylglutaryl CoA Reductases Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID. HMG CoA Reductases,3-Hydroxy-3-methylglutaryl CoA Reductase,HMG CoA Reductase,Hydroxymethylglutaryl CoA Reductase,3 Hydroxy 3 methylglutaryl CoA Reductase,CoA Reductase, 3-Hydroxy-3-methylglutaryl,Reductase, 3-Hydroxy-3-methylglutaryl CoA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile
D013261 Sterols Steroids with a hydroxyl group at C-3 and most of the skeleton of cholestane. Additional carbon atoms may be present in the side chain. (IUPAC Steroid Nomenclature, 1987) Sterol

Related Publications

S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
July 1970, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
August 1994, Metabolism: clinical and experimental,
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
November 1973, The Journal of clinical investigation,
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
January 2003, Gastroenterologie clinique et biologique,
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
October 1980, Gastroenterology,
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
May 1977, Biochimica et biophysica acta,
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
April 1990, The Italian journal of gastroenterology,
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
May 1980, Journal of lipid research,
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
December 1999, Metabolism: clinical and experimental,
S Shefer, and S Hauser, and G Salen, and F G Zaki, and J Bullock, and E Salgado, and J Shevitz
August 2000, Journal of gastroenterology and hepatology,
Copied contents to your clipboard!