Hypoxanthine transport in mammalian cells: cell type-specific differences in sensitivity to inhibition by dipyridamole and uridine. 1984

P G Plagemann, and R M Wohlhueter

We have measured by rapid kinetic techniques the zero-trans influx of hypoxanthine in various cell lines and its sensitivity to inhibition by uridine, dipyridamole, nitrobenzylthioinosine and nitrobenzylthiopurine. The results and those reported earlier divided the cells into two distinct groups. In mouse P388, L1210 and L929 cells uridine and hypoxanthine had little effect on the transport of each other, supporting the view that nucleosides and hypoxanthine are transported by different carriers. In these cells, hypoxanthine transport was also uniquely resistant to inhibition by dipyridamole (IC50 (50% inhibition dose) greater than 30 microM). In Novikoff and HTC rat hepatoma, Chinese hamster ovary and Ehrlich ascites tumor cells, on the other hand, hypoxanthine and uridine inhibited the transport of each other about 50% at a concentration corresponding to the Michaelis-Menten constant of their transport, and hypoxanthine transport was strongly inhibited by dipyridamole (IC50 = 100 to 400 nM). Although these results are compatible with the view that nucleosides and hypoxanthine are transported by a common carrier in these cells, this conclusion is not supported by the finding that uridine transport is strongly inhibited in some of these cell lines, as in the first group of cells, by nitrobenzylthioinosine, whereas hypoxanthine transport is highly resistant in all cell lines tested. In contrast, the transport of both substrates is highly resistant to inhibition by nitrobenzylthiopurine. The Michaelis-Menten constants for uridine transport are about the same in all cell lines. The Michaelis-Menten constants for hypoxanthine transport are similar to those for uridine transport in some cell lines, but are much higher in others.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007042 Hypoxanthines Purine bases related to hypoxanthine, an intermediate product of uric acid synthesis and a breakdown product of adenine catabolism.
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004176 Dipyridamole A phosphodiesterase inhibitor that blocks uptake and metabolism of adenosine by erythrocytes and vascular endothelial cells. Dipyridamole also potentiates the antiaggregating action of prostacyclin. (From AMA Drug Evaluations Annual, 1994, p752) Antistenocardin,Apo-Dipyridamole,Cerebrovase,Cléridium,Curantil,Curantyl,Dipyramidole,Kurantil,Miosen,Novo-Dipiradol,Persantin,Persantine,Apo Dipyridamole,Novo Dipiradol

Related Publications

P G Plagemann, and R M Wohlhueter
April 1974, Biochimica et biophysica acta,
P G Plagemann, and R M Wohlhueter
January 2020, PloS one,
P G Plagemann, and R M Wohlhueter
November 1974, Biochimica et biophysica acta,
P G Plagemann, and R M Wohlhueter
December 2007, Science in China. Series C, Life sciences,
P G Plagemann, and R M Wohlhueter
July 1972, Biochemistry,
Copied contents to your clipboard!