Effects of membrane potential and temperature on the excitatory post-synaptic current in the crayfish muscle. 1978

K Onodera, and A Takeuchi

1. Effects of membrane potential and temperature on the excitatory post-synaptic current (e.p.s.c.) were studied in the voltage-clamped crayfish muscle. E.p.c. was recorded either by measuring the feedback current through an intracellular wire electrode or by focal recording with an extracellular micro-electrode. 2. The amplitude of the e.p.s.c. obtained by the voltage clamp method varied almost linearly with membrane potential between -100 mV and +70 mV, whilst the reversal potential was +23.8 +/- 3.9 mV (S.E. of mean). 3. The declining phase of the extracellular e.p.s.c. was slightly prolonged by depolarization and shortened by hyperpolarization. Potential dependence of the decay time constant was expressed by tau = a exp (AV), with a = 2.78 msec and A = 0.0037 mV-1. 4. The decay time constant had a Q10 of 2.3 and the growth time had a Q10 of 1.5. 5. The voltage dependence of the decay phase of the e.p.s. was the reverse of that found in frog end-plate. It is concluded that the voltage dependence of the time course is not related either to the charge of ions which carry the synaptic current or to the charge of the transmitter.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

K Onodera, and A Takeuchi
January 1974, Pflugers Archiv : European journal of physiology,
K Onodera, and A Takeuchi
May 1977, Pflugers Archiv : European journal of physiology,
K Onodera, and A Takeuchi
January 1988, Pflugers Archiv : European journal of physiology,
K Onodera, and A Takeuchi
January 1988, Pflugers Archiv : European journal of physiology,
K Onodera, and A Takeuchi
May 1987, Journal of neurophysiology,
Copied contents to your clipboard!