On the localization of ubiquinone in phosphatidylcholine bilayers. 1984

M A Stidham, and T J McIntosh, and J N Siedow

The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05-0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (P beta') phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D014451 Ubiquinone A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals. Coenzyme Q
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

M A Stidham, and T J McIntosh, and J N Siedow
June 1992, Biochemistry and cell biology = Biochimie et biologie cellulaire,
M A Stidham, and T J McIntosh, and J N Siedow
January 1986, Biochemistry international,
M A Stidham, and T J McIntosh, and J N Siedow
November 1981, Proceedings of the National Academy of Sciences of the United States of America,
M A Stidham, and T J McIntosh, and J N Siedow
June 2013, The journal of physical chemistry. B,
M A Stidham, and T J McIntosh, and J N Siedow
December 1976, Biochimica et biophysica acta,
M A Stidham, and T J McIntosh, and J N Siedow
October 1978, Biochimica et biophysica acta,
M A Stidham, and T J McIntosh, and J N Siedow
November 1987, Biochemistry,
Copied contents to your clipboard!