Respiratory mechanics and breathing pattern during and following maximal exercise. 1984

M Younes, and G Kivinen

We looked for evidence of changes in lung elastic recoil and of inspiratory muscle fatigue at maximal exercise in seven normal subjects. Esophageal pressure, flow, and volume were measured during spontaneous breathing at increasing levels of cycle exercise to maximum. Total lung capacity (TLC) was determined at rest and immediately before exercise termination using a N2-washout technique. Maximal inspiratory pressure and inspiratory capacity were measured at 1-min intervals. The time course of instantaneous dynamic pressure of respiratory muscles (Pmus) was calculated for the spontaneous breaths immediately preceding exercise termination. TLC volume and lung elastic recoil at TLC were the same at the end of exercise as at rest. Maximum static inspiratory pressures at exercise termination were not reduced. However, mean Pmus of spontaneous breaths at end exercise exceeded 15% of maximum inspiratory pressure in five of the subjects. We conclude that lung elastic recoil is unchanged even at maximal exercise and that, while inspiratory muscles operate within a potentially fatiguing range, the high levels of ventilation observed during maximal exercise are not maintained for a sufficient time to result in mechanical fatigue.

UI MeSH Term Description Entries
D008170 Lung Compliance The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562) Compliance, Lung,Compliances, Lung,Lung Compliances
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

M Younes, and G Kivinen
July 1987, Journal of applied physiology (Bethesda, Md. : 1985),
M Younes, and G Kivinen
January 1994, European journal of applied physiology and occupational physiology,
M Younes, and G Kivinen
January 1984, Acta physiologica Scandinavica. Supplementum,
M Younes, and G Kivinen
March 2019, Respiratory physiology & neurobiology,
M Younes, and G Kivinen
January 1987, Journal of reproduction and fertility. Supplement,
M Younes, and G Kivinen
October 1990, Journal of anesthesia,
M Younes, and G Kivinen
January 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
M Younes, and G Kivinen
February 2007, International journal of sports medicine,
M Younes, and G Kivinen
March 1991, The American review of respiratory disease,
Copied contents to your clipboard!