Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. 1984

A M Derrington, and P Lennie

The discharges of single neurones in the parvocellular and magnocellular laminae of the macaque's lateral geniculate nucleus (l.g.n.) were recorded with glass-insulated tungsten micro-electrodes. Linearity of spatial summation was examined using the test devised by Hochstein & Shapley (1976). 2 of 272 parvocellular units and 6 of 105 magnocellular units showed clearly non-linear spatial summation. A quantitative index of non-linearity did not suggest the existence of a distinct 'non-linear' class of magnocellular unit. Spatial contrast sensitivity to moving gratings was measured by a tracking procedure in which contrast was adjusted to elicit a reliable modulation of discharge. With the exception of cells that were driven by blue-sensitive cones, measurements of contrast sensitivity did not reveal distinct subgroups of parvocellular units. All had low sensitivity, and those with receptive fields in the fovea could resolve spatial frequencies of up to 40 cycles deg-1. Magnocellular units had substantially higher sensitivity, but poorer spatial resolution. The higher sensitivities of magnocellular units led to their giving saturated responses to stimuli of high contrast. Responses of parvocellular units were rarely saturated by any stimulus. At any one eccentricity the receptive fields of parvocellular units had smaller centres than did those of magnocellular units. Receptive fields of magnocellular units driven by the ipsilateral eye had larger receptive fields than did those driven by the contralateral eye. Parvocellular units were most sensitive to stimuli modulated at temporal frequencies close to 10 Hz; magnocellular units to stimuli modulated at frequencies nearer 20 Hz. The loss of sensitivity as temporal frequency fell below optimum was more marked in magnocellular than parvocellular units. Changes in temporal frequency altered the shapes of the spatial contrast sensitivity curves of both parvocellular and magnocellular units. These changes could be explained by supposing that centre and surround have different temporal properties, and that the surround is relatively less sensitive to higher temporal frequencies.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010364 Pattern Recognition, Visual Mental process to visually perceive a critical number of facts (the pattern), such as characters, shapes, displays, or designs. Recognition, Visual Pattern,Visual Pattern Recognition
D005556 Form Perception The sensory discrimination of a pattern, shape, or outline. Contour Perception,Contour Perceptions,Form Perceptions,Perception, Contour,Perception, Form,Perceptions, Contour,Perceptions, Form
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

A M Derrington, and P Lennie
November 1983, The Journal of physiology,
A M Derrington, and P Lennie
June 2021, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A M Derrington, and P Lennie
January 1986, Vision research,
A M Derrington, and P Lennie
November 1983, The Journal of physiology,
A M Derrington, and P Lennie
September 1978, The Journal of physiology,
A M Derrington, and P Lennie
January 1987, Experimental brain research,
A M Derrington, and P Lennie
October 1968, Vision research,
Copied contents to your clipboard!