Circulatory and respiratory effects of methoxyflurane in dogs: comparison of halothane. 1984

E P Steffey, and T B Farver, and M J Woliner

Circulatory and respiratory effects of 3 alveolar concentrations (representing 1.0, 1.5, and 2.0 times the minimal alveolar concentration, MAC) of methoxyflurane in O2 were compared with similar MAC multiples of halothane in O2. Eight adult mixed breed dogs that were healthy and nonmedicated were studied in cross-over fashion with both agents during conditions of controlled ventilation (CV; PaCO2 averaged 34 to 38 mm of Hg) and spontaneous ventilation (SV). When ventilation was controlled, methoxyflurane similar to halothane caused dose-related cardiovascular depression. Except for a greater heart rate and lesser stroke volume with methoxyflurane, little difference was noticed between the anesthetics at equivalent doses during CV. There was less dose-related circulatory depression during SV with both agents but particularly with methoxyflurane. During SV, PaCO2 increased progressively with increases in alveolar concentrations of methoxyflurane and halothane. Methoxyflurane caused significantly greater (P less than 0.05) hypoventilation than halothane only at 2.0 MAC. Except for a greater respiratory gas flow and inspiratory-expiratory gas flow ratio and a lesser inspiratory-expiratory time ratio with methoxyflurane, there was no anesthetic- or dose-response effect on respiratory variables.

UI MeSH Term Description Entries
D008733 Methoxyflurane An inhalation anesthetic. Currently, methoxyflurane is rarely used for surgical, obstetric, or dental anesthesia. If so employed, it should be administered with NITROUS OXIDE to achieve a relatively light level of anesthesia, and a neuromuscular blocking agent given concurrently to obtain the desired degree of muscular relaxation. (From AMA Drug Evaluations Annual, 1994, p180) Methofluranum,Anecotan,Penthrane,Pentrane
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000136 Acid-Base Equilibrium The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance. Anion Gap,Acid-Base Balance,Acid Base Balance,Acid Base Equilibrium,Anion Gaps,Balance, Acid-Base,Equilibrium, Acid-Base,Gap, Anion,Gaps, Anion
D000768 Anesthesia, General Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery. Anesthesias, General,General Anesthesia,General Anesthesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E P Steffey, and T B Farver, and M J Woliner
January 1961, Anesthesiology,
E P Steffey, and T B Farver, and M J Woliner
July 1970, Der Anaesthesist,
E P Steffey, and T B Farver, and M J Woliner
April 1965, The Journal of pharmacology and experimental therapeutics,
E P Steffey, and T B Farver, and M J Woliner
January 1966, Anesthesia and analgesia,
E P Steffey, and T B Farver, and M J Woliner
May 1980, American journal of veterinary research,
E P Steffey, and T B Farver, and M J Woliner
October 1969, Nagoya medical journal,
E P Steffey, and T B Farver, and M J Woliner
October 1968, American journal of veterinary research,
E P Steffey, and T B Farver, and M J Woliner
July 1971, Canadian Anaesthetists' Society journal,
Copied contents to your clipboard!