Interactions between diploid embryonal carcinoma cells and early embryonic cells. 1984

V E Papaioannou, and B K Waters, and J Rossant

Two diploid embryonal carcinoma (EC) cell lines, P10 and P19, differ in their response to the embryonic environment. P10 produces mostly normal chimeras following injection into blastocysts, whereas P19 produces mostly abnormal chimeras. In this study, P10 cells were aggregated with morulae, and all resulting fetuses were chimeric with very large contributions from the EC cells. However, all embryos were abnormal. Following aggregation of P19 cells with morulae, very few embryos were recovered and they were all non-chimeric. Both P10 and P19 were capable of forming functional gap junctions with morula cells and with the ICM of the blastocyst but not with trophoblast, showing that differences in the ability to make junctional contact with the embryo cannot explain the differences between the two cell lines.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D009028 Morula An early embryo that is a compact mass of about 16 BLASTOMERES. It resembles a cluster of mulberries with two types of cells, outer cells and inner cells. Morula is the stage before BLASTULA in non-mammalian animals or a BLASTOCYST in mammals. Morulas
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D004171 Diploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X. Diploid,Diploid Cell,Cell, Diploid,Cells, Diploid,Diploid Cells,Diploidies,Diploids
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013724 Teratoma A true neoplasm composed of a number of different types of tissue, none of which is native to the area in which it occurs. It is composed of tissues that are derived from three germinal layers, the endoderm, mesoderm, and ectoderm. They are classified histologically as mature (benign) or immature (malignant). (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1642) Dysembryoma,Teratoid Tumor,Teratoma, Cystic,Teratoma, Mature,Teratoma, Benign,Teratoma, Immature,Teratoma, Malignant,Benign Teratoma,Benign Teratomas,Dysembryomas,Immature Teratoma,Immature Teratomas,Malignant Teratoma,Malignant Teratomas,Teratoid Tumors,Teratomas,Teratomas, Benign,Teratomas, Immature,Teratomas, Malignant,Tumor, Teratoid,Tumors, Teratoid

Related Publications

V E Papaioannou, and B K Waters, and J Rossant
December 1984, Cell differentiation,
V E Papaioannou, and B K Waters, and J Rossant
December 1979, Journal of embryology and experimental morphology,
V E Papaioannou, and B K Waters, and J Rossant
March 1993, The International journal of developmental biology,
V E Papaioannou, and B K Waters, and J Rossant
March 1987, The Journal of cell biology,
V E Papaioannou, and B K Waters, and J Rossant
April 1984, Molecular and cellular biology,
V E Papaioannou, and B K Waters, and J Rossant
April 2010, Proteomics,
V E Papaioannou, and B K Waters, and J Rossant
February 1987, Journal of reproductive immunology,
V E Papaioannou, and B K Waters, and J Rossant
August 2006, CSH protocols,
V E Papaioannou, and B K Waters, and J Rossant
July 2008, Journal of proteome research,
Copied contents to your clipboard!