Lithocholate glucuronide is a cholestatic agent. 1984

D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester

Lithocholic acid and its taurine, glycine, and sulfate derivatives are potent cholestatic agents. Lithocholate glucuronide is present in the plasma and urine of patients with cholestatic syndromes, but little is known of its metabolism, excretion, and cholestatic potential. [3 beta-3H]lithocholate 3-O-beta-D-glucuronide was synthesized, and chemical and radiochemical purity were established. The aqueous solubility of lithocholate glucuronide was determined and found to be greater than that of lithocholic acid or several of its derivatives. In the range of concentrations examined, calcium ions precipitated lithocholate glucuronide stoichiometrically. The material was administered to rats prepared with an external biliary fistula. When 17-25 micrograms quantities were administered, 89.1 +/- 4.5% (mean +/- SEM) of the radiolabel was secreted in bile within the first 20 h after administration, the major fraction being secreted in less than 20 min. Four-fifths of the radiolabeled material in bile was the administered unaltered parent compound, while a minor fraction consisted of a more polar derivative(s). We showed that increasing biliary concentrations of more polar derivatives were observed with milligram doses of [3H]lithocholate glucuronide, and with time after the administration of these loading doses. Milligram doses of [3H]lithocholate glucuronide resulted in partial or complete cholestasis. When induced cholestasis was partial, secretion in bile remained the primary excretory route (82.5-105.6% recovery in bile), while, when complete cholestasis was induced, wide tissue distribution of radiolabel was observed. Cholestasis developed rapidly during infusion of [3H]lithocholate glucuronide. Bile flow was diminished within 10-20 min of the start of an infusion of 0.05 mumol, 100 g-1 body weight, minute-1, administered concomitantly with an equimolar infusion of taurocholate. The results establish that lithocholate glucuronide exerts cholestatic effects comparable to those exerted by unconjugated lithocholic acid.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008095 Lithocholic Acid A bile acid formed from chenodeoxycholate by bacterial action, usually conjugated with glycine or taurine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as cholagogue and choleretic. Lithocholate,Isolithocholic Acid,Acid, Isolithocholic,Acid, Lithocholic
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002779 Cholestasis Impairment of bile flow due to obstruction in small bile ducts (INTRAHEPATIC CHOLESTASIS) or obstruction in large bile ducts (EXTRAHEPATIC CHOLESTASIS). Bile Duct Obstruction,Biliary Stasis,Bile Duct Obstructions,Biliary Stases,Cholestases,Duct Obstruction, Bile,Duct Obstructions, Bile,Obstruction, Bile Duct,Obstructions, Bile Duct,Stases, Biliary,Stasis, Biliary
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
January 1989, Life sciences,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
January 1995, Journal of hepatology,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
January 1995, Journal of gastroenterology and hepatology,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
June 1995, Biochimica et biophysica acta,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
January 1991, Biochimica et biophysica acta,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
June 1991, Liver,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
August 1993, Digestive diseases and sciences,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
January 1991, Biochimica et biophysica acta,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
May 2010, Hepatology research : the official journal of the Japan Society of Hepatology,
D G Oelberg, and M V Chari, and J M Little, and E W Adcock, and R Lester
February 1971, The American journal of pathology,
Copied contents to your clipboard!