Inhibition of human liver cathepsin L by alpha 2 cysteine-proteinase inhibitor and the low-Mr cysteine proteinase inhibitor from human serum. 1984

M Pagano, and F Esnard, and R Engler, and F Gauthier

The inhibition of human liver cathepsin L by two specific proteinase inhibitors present in human serum, namely alpha 2 cysteine-proteinase inhibitor and the low-Mr cysteine-proteinase inhibitor, was studied. Kinetic parameters, including inhibition constants (Ki) and rate constants for association and dissociation (k+1 and K-1), were determined. The values found are consistent with a possible physiological function of these inhibitors to control cathepsin L activity. Furthermore, a transfer of active proteinase from the complex with either cysteine-proteinase inhibitor species to alpha 2-macroglobulin was demonstrated in vitro. Given the rate of dissociation of both cathepsin-L-cysteine-proteinase inhibitor complexes, a function of transitory inhibitor can therefore be hypothesized for these proteins and might then provide an explanation of the clearance of lysosomal proteinases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M Pagano, and F Esnard, and R Engler, and F Gauthier
February 1982, FEBS letters,
M Pagano, and F Esnard, and R Engler, and F Gauthier
December 1986, Biochemistry and cell biology = Biochimie et biologie cellulaire,
M Pagano, and F Esnard, and R Engler, and F Gauthier
March 1980, Biochemical and biophysical research communications,
M Pagano, and F Esnard, and R Engler, and F Gauthier
January 1985, Progress in clinical and biological research,
M Pagano, and F Esnard, and R Engler, and F Gauthier
April 1983, Clinical biochemistry,
M Pagano, and F Esnard, and R Engler, and F Gauthier
August 1998, Biochemistry,
M Pagano, and F Esnard, and R Engler, and F Gauthier
February 1995, FEBS letters,
M Pagano, and F Esnard, and R Engler, and F Gauthier
February 2000, The Journal of biological chemistry,
M Pagano, and F Esnard, and R Engler, and F Gauthier
November 1986, The Journal of biological chemistry,
Copied contents to your clipboard!