Induction of mRNA coding for phenobarbital-inducible form of microsomal cytochrome P-450 in rat liver by administration of 1,1-Di(p-chlorophenyl)-2,2-dichloroethylene and phenobarbital. 1984

K Morohashi, and H Yoshioka, and K Sogawa, and Y Fujii-Kuriyama, and T Omura

In the preceding paper (Yoshioka, H., et al. (1984) J. Biochem. 95, 937-947), we reported that 1,1-di(p-chlorophenyl)-2,2-dichloro-ethylene (DDE) induced the phenobarbital (PB)-inducible form of microsomal cytochrome P-450 (P-450(PB-1) in rat liver. In order to study more precisely the molecular events responsible for the induction of this particular form of cytochrome P-450 by the two chemical compounds, we determined the amounts of the mRNA coding for P-450(PB-1) in the liver of rats given a single dose of PB or DDE. RNA was extracted from the livers of the treated rats and the determination of the specific mRNA was carried out by using the rabbit reticulocyte lysate translation system and by a dot hybridization method using cloned P-450(PB-1) cDNA (Fujii-Kuriyama, Y., et al. (1982) Proc. Natl. Acad. Sci. U.S. 79, 2793-2797) as the probe. The amounts of P-450(PB-1) mRNA determined by these two methods at various time points of the induction process showed good agreement. These observations further confirmed the induction of an identical form of cytochrome P-450 by DDE and PB. The maximum level of P-450(PB-1) mRNA, which was about 8-fold higher than the control level, was attained at 20-30 h and at 48-72 h after the administration of PB and DDE, respectively. The mRNA level showed a rapid decrease after the peak in the liver of PB-treated rats, but the decrease was much slower with DDE-treated rats. We conclude that DDE had a more persistent inducing effect on the mRNA level than PB, although these two compounds induced an identical form of cytochrome P-450 in the liver microsomes of the animals.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003633 Dichlorodiphenyl Dichloroethylene An organochlorine pesticide, it is the ethylene metabolite of DDT. DDE,DDX,1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene,DDMU,p,p'-DDE,p,p-Dichlorodiphenyldichloroethylene,Dichloroethylene, Dichlorodiphenyl
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

K Morohashi, and H Yoshioka, and K Sogawa, and Y Fujii-Kuriyama, and T Omura
April 1984, Journal of biochemistry,
K Morohashi, and H Yoshioka, and K Sogawa, and Y Fujii-Kuriyama, and T Omura
January 1969, Toxicology and applied pharmacology,
K Morohashi, and H Yoshioka, and K Sogawa, and Y Fujii-Kuriyama, and T Omura
June 1981, The Biochemical journal,
K Morohashi, and H Yoshioka, and K Sogawa, and Y Fujii-Kuriyama, and T Omura
June 1984, Biochemical pharmacology,
K Morohashi, and H Yoshioka, and K Sogawa, and Y Fujii-Kuriyama, and T Omura
January 1975, Journal of nutritional science and vitaminology,
K Morohashi, and H Yoshioka, and K Sogawa, and Y Fujii-Kuriyama, and T Omura
May 1982, Proceedings of the National Academy of Sciences of the United States of America,
K Morohashi, and H Yoshioka, and K Sogawa, and Y Fujii-Kuriyama, and T Omura
April 1971, Biochemistry,
Copied contents to your clipboard!