Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs. 1984

R M Tate, and H G Morris, and W R Schroeder, and J E Repine

Generation of reactive oxygen metabolites, thromboxane increases, and vasoconstriction have been implicated in the pathogenesis of acute edematous lung injury, such as that seen in patients with the Adult Respiratory Distress Syndrome (ARDS), but their interactions are unknown. We hypothesized that reactive O2 products would stimulate arachidonic acid metabolism in lungs and that vasoactive products of arachidonate, such as the potent vasoconstrictor thromboxane A2, might then mediate O2-metabolite-induced pulmonary vasoconstriction. We found that O2 metabolites generated by injection of purine plus xanthine oxidase caused increases in mean pulmonary artery perfusion pressures (27 +/- 4 mmHg) in isolated perfused lungs. In addition, purine plus xanthine oxidase also caused 30-fold increases in perfusate levels of thromboxane B2 (the stable metabolite of thromboxane A2) compared with only twofold increases in 6-keto-PGF1a (the stable metabolite of prostacyclin). Moreover, prior addition of catalase inhibited both vasoconstriction and the thromboxane B2 production seen in isolated lungs following injection of purine plus xanthine oxidase. Similarly, pretreatment with cyclooxygenase inhibitors, either aspirin or indomethacin, also completely blocked thromboxane generation and markedly attenuated pressor responses usually seen after purine plus xanthine oxidase (increase in mean pulmonary artery perfusion pressures, 4.4 +/- 1.5 mmHg). Furthermore, imidazole, a thromboxane synthetase inhibitor, also decreased O2-metabolite-induced thromboxane generation and vasoconstriction. These results suggested that thromboxane generation might participate in O2-metabolite-induced vasoconstriction. However, since a significant correlation between thromboxane levels and the degree of vasoconstriction could not be demonstrated, and since addition of superoxide dismutase reduced thromboxane generation but did not affect the intensity of vasoconstriction, it is possible that thromboxane is not the only vasoactive mediator in this model. We conclude that exposing lungs to O2 metabolites results in thromboxane generation and that thromboxane is a major mediator of oxidant-induced vasoconstriction.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D013931 Thromboxanes Physiologically active compounds found in many organs of the body. They are formed in vivo from the prostaglandin endoperoxides and cause platelet aggregation, contraction of arteries, and other biological effects. Thromboxanes are important mediators of the actions of polyunsaturated fatty acids transformed by cyclooxygenase. Thromboxane
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions

Related Publications

R M Tate, and H G Morris, and W R Schroeder, and J E Repine
November 1982, The American review of respiratory disease,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
January 1991, Acta anaesthesiologica Scandinavica,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
April 1987, The American review of respiratory disease,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
August 1993, Scandinavian journal of clinical and laboratory investigation,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
October 2000, Respiration physiology,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
January 1966, Acta physiologica Scandinavica,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
May 1995, Respiration physiology,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
August 1995, The Journal of pharmacology and experimental therapeutics,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
October 1987, Pflugers Archiv : European journal of physiology,
R M Tate, and H G Morris, and W R Schroeder, and J E Repine
April 1995, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!