Mammalian folyl polyglutamate synthetase: partial purification and properties of the mouse liver enzyme. 1984

R G Moran, and P D Colman

Folyl polyglutamate synthetase has been partially purified from mouse liver, and the general features of this enzyme have been characterized. The purification procedure utilized fractionation with ammonium sulfate, gel filtration, and affinity chromatography on ATP-agarose and resulted in a 350-fold increase in specific activity with 8-20% recovery of enzyme activity. Enzyme could be stabilized by glycerol or by ATP, but stability was not appreciably enhanced by folate. The enzymatic reaction was completely dependent on folate, ATP, and Mg2+ while partial reaction rates were observed in the absence of KCl or beta-mercaptoethanol. Highest reaction rates were observed at pH 8.2-9.5 at 37 degrees C. Chromatography of purified enzyme on calibrated gel filtration columns suggested a molecular weight of 65 000. Mouse liver folyl polyglutamate synthetase coupled [3H]glutamic acid to all of the naturally occurring folates studied. Analysis of the reaction products by high-performance liquid chromatography demonstrated that several folyl oligoglutamates were formed at low substrate concentrations but that only folyl diglutamate was formed at substrate concentrations approaching saturation. Dihydrofolate, tetrahydrofolate, 5,10-methylenetetrahydrofolate, 10-formyltetrahydrofolate, and 5-formyltetrahydrofolate were the best substrates. Folic acid and 5-methyltetrahydrofolate were also substrates for this reaction, but much higher concentrations of these compounds were required to saturate the enzyme. These data suggest that all of the tetrahydrofolyl compounds (except 5-methyltetrahydrofolate) are the monoglutamyl substrates for polyglutamation in vivo and that 5-methyltetrahydrofolate is not likely to be a direct precursor for folate polyglutamates in mouse liver.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010453 Peptide Synthases Ligases that catalyze the joining of adjacent AMINO ACIDS by the formation of carbon-nitrogen bonds between their carboxylic acid groups and amine groups. Peptide Synthetases,Acid-Amino-Acid Ligases,Acid Amino Acid Ligases,Ligases, Acid-Amino-Acid,Synthases, Peptide,Synthetases, Peptide
D011623 gamma-Glutamyl Hydrolase Catalyzes the hydrolysis of pteroylpolyglutamic acids in gamma linkage to pterolylmonoglutamic acid and free glutamic acid. EC 3.4.19.9. Conjugase,Folate Conjugase,Folyl Conjugate Synthetase,Pteroyl Polyglutamate Hydrolase,Carboxypeptidase G,Carboxypeptidase G1,Carboxypeptidase G2,Folacin Conjugase,Folate Hydrolyzing Enzyme,Folyl Poly-gamma-Glutamate Carboxypeptidase,Folyl Polyglutamate Cleavage Enzyme,Folylpolyglutamate Hydrolase,gamma Glutamyl Hydrolase
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D005260 Female Females
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

R G Moran, and P D Colman
May 1970, The Journal of biological chemistry,
R G Moran, and P D Colman
July 1979, The Biochemical journal,
R G Moran, and P D Colman
October 1963, Canadian journal of biochemistry and physiology,
R G Moran, and P D Colman
May 1984, The Journal of biological chemistry,
R G Moran, and P D Colman
March 1974, Canadian journal of biochemistry,
Copied contents to your clipboard!