Mathematical model for cadmium kinetics in the isolated perfused rat liver system. 1984

J M Frazier

The isolated perfused rat liver (IPRL) preparation has previously been used to investigate cadmium kinetics. A mathematical model which has been developed to simulate cadmium kinetics in the IPRL is described. The model takes into consideration binding of cadmium to both intra- and extracellular proteins and the mechanisms of membrane transport. In addition, the competitive interaction of cadmium with endogenous zinc is incorporated into the model. Model simulations of the behavior of cadmium and zinc in the perfusion medium, liver, and bile are compared to results from IPRL experiments involving cadmium doses ranging from 0.29 to 15.6 mumol. A major contribution of this model is the identification, from a kinetic point of view, of two high-molecular-weight classes of intracellular cadmium-binding species which can be identified by two distinct peaks in Sephadex G-75 profiles of hepatic cytosol. This model can be utilized for the quantitation of kinetics based on specific mechanisms involved in cadmium hepatic kinetics.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

J M Frazier
June 1976, Canadian journal of physiology and pharmacology,
J M Frazier
November 1986, Toxicology letters,
J M Frazier
April 1983, Journal of pharmacokinetics and biopharmaceutics,
J M Frazier
September 1992, The American surgeon,
J M Frazier
January 1973, Environmental health perspectives,
J M Frazier
January 1962, Acta hepato-splenologica,
Copied contents to your clipboard!